Cluster States from Gaussian States: Essential Diagnostic Tools for Continuous-Variable One-Way Quantum Computing

被引:2
|
作者
Gonzalez-Arciniegas, Carlos [1 ]
Nussenzveig, Paulo [2 ]
Martinelli, Marcelo [2 ]
Pfister, Olivier [1 ]
机构
[1] Univ Virginia, Dept Phys, 382 McCormick Rd, Charlottesville, VA 22904 USA
[2] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
来源
PRX QUANTUM | 2021年 / 2卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
PODOLSKY-ROSEN PARADOX; SEPARABILITY CRITERION; REALIZATION; GENERATION;
D O I
10.1103/PRXQuantum.2.030343
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Continuous-variable (CV) cluster states are a universal quantum computing platform that has experimentally outscaled qubit platforms by orders of magnitude. Room-temperature implementation of CV cluster states has been achieved with quantum optics by using multimode squeezed Gaussian states. It has also been proven that fault tolerance thresholds for CV quantum computing can be reached at realistic squeezing levels. In this paper, we show that standard approaches to design and characterize CV cluster states can miss entanglement present in the system. Such hidden entanglement may be used to increase the power of a quantum computer but it can also, if undetected, hinder the successful implementation of a quantum algorithm. By a detailed analysis of the structure of Gaussian states, we derive an algorithm that reveals hidden entanglement in an arbitrary Gaussian state and optimizes its use for one-way quantum computing.
引用
收藏
页数:15
相关论文
共 19 条
  • [1] Quantum computing with multidimensional continuous-variable cluster states in a scalable photonic platform
    Wu, Bo-Han
    Alexander, Rafael N.
    Liu, Shuai
    Zhang, Zheshen
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [2] Quantum steering for continuous-variable states
    Lee, Chang-Woo
    Ji, Se-Wan
    Nha, Hyunchul
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (09) : 2483 - 2490
  • [3] Demonstration of a Controlled-Phase Gate for Continuous-Variable One-Way Quantum Computation
    Ukai, Ryuji
    Yokoyama, Shota
    Yoshikawa, Jun-ichi
    van Loock, Peter
    Furusawa, Akira
    PHYSICAL REVIEW LETTERS, 2011, 107 (25)
  • [4] Quantum memory for entangled continuous-variable states
    Jensen, K.
    Wasilewski, W.
    Krauter, H.
    Fernholz, T.
    Nielsen, B. M.
    Owari, M.
    Plenio, M. B.
    Serafini, A.
    Wolf, M. M.
    Polzik, E. S.
    NATURE PHYSICS, 2011, 7 (01) : 13 - 16
  • [5] Composite-cluster states and alternative architectures for one-way quantum computation
    Milne, Darran F.
    Korolkova, Natalia V.
    PHYSICAL REVIEW A, 2012, 85 (03):
  • [6] Equivalent noise properties of scalable continuous-variable cluster states
    Walshe, Blayney W.
    Alexander, Rafael N.
    Matsuura, Takaya
    Baragiola, Ben Q.
    Menicucci, Nicolas C.
    PHYSICAL REVIEW A, 2023, 108 (04)
  • [7] Continuous-variable optical quantum information processing with non-Gaussian states in the time domain
    Okuno, Daichi
    Takeda, Shuntaro
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING XXII, 2024, 13148
  • [8] Continuous-variable Quantum Teleportation of States Multiplexed in Time Domain
    Charoensombutamon, Baramee
    Asavanant, Warit
    Nakamura, Tomohiro
    Ebihara, Takeru
    Yokoyama, Shota
    Alexander, Rafael N.
    Menicucci, Nicolas C.
    Endo, Mamoru
    Yoshikawa, Jun-ichi
    Yonezawa, Hidehiro
    Furusawa, Akira
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [9] Continuous Variable Quantum Information: Gaussian States and Beyond
    Adesso, Gerardo
    Ragy, Sammy
    Lee, Antony R.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2)
  • [10] Architecture and noise analysis of continuous-variable quantum gates using two-dimensional cluster states
    Larsen, Mikkel, V
    Neergaard-Nielsen, Jonas S.
    Andersen, Ulrik L.
    PHYSICAL REVIEW A, 2020, 102 (04)