Uniqueness of the measure with full dimension on sofic affine-invariant subsets of the 2-torus

被引:11
作者
Olivier, Eric [1 ]
机构
[1] Univ Aix Marseille 1, LATP, CNRS, UMR 6632, Marseille, France
关键词
COUNTABLE MARKOV SHIFTS; VARIATIONAL PRINCIPLE; EXPANDING MAPS; THERMODYNAMIC FORMALISM; MULTIFRACTAL FORMALISM; GIBBS MEASURES; EXCEPTIONAL PHENOMENA; HAUSDORFF DIMENSION; SYSTEMS; ENTROPY;
D O I
10.1017/S0143385709000546
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the variational principle for dimension on compact subsets of the 2-torus which are invariant under a non-conformal expanding diagonal endomorphism. Condition (H) ensures that the invariant measures with full dimension are the equilibrium states of some potential function. This result applies to the problem of uniqueness of the measure with full dimension on the sofic affine-invariant sets.
引用
收藏
页码:1503 / 1528
页数:26
相关论文
共 52 条
[1]  
[Anonymous], MATH SYST THEORY
[2]  
[Anonymous], 1990, ASTERISQUE
[3]  
[Anonymous], 1976, LECT NOTES MATH
[4]  
[Anonymous], 1964, T AM MATH SOC, DOI DOI 10.1090/S0002-9947-1964-0161372-1
[5]  
[Anonymous], 1975, LECT NOTES MATH
[6]  
Bedford T., 1984, PhD Thesis
[8]   A NOTE ON MINIMAL COVERS FOR SOFIC SYSTEMS [J].
BOYLE, M ;
KITCHENS, B ;
MARCUS, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 95 (03) :403-411
[9]  
Breiman L., 1968, PROBABILITY
[10]   Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps [J].
Buzzi, J ;
Sarig, O .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :1383-1400