A diamagnetic-airflow hybrid levitation structure

被引:1
作者
Gong, Qi [1 ]
Zhang, Weiwei [1 ]
Su, Yufeng [1 ]
Zhang, Kun [1 ]
机构
[1] Zhengzhou Univ, Sch Mech Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Diamagnetic; airflow; stabilized levitation; simulation; energy harvesting; MOTION;
D O I
10.3233/JAE-190081
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a diamagnetic-airflow hybrid levitation structure is reported, with a floating magnet rotor stably levitated above a diamagnetic disc just using a lifting magnet and airflow. Compared with the typical diamagnetically stabilized structure, the rotation speed of the rotor is increased from 9570 rpm to 16666 rpm, and the levitation gap is increased from 0.3 mm to 0.7 mm when the airflow rate exceeds 2198 seem under standard temperature and pressure (STP). At the same time, the rotor can be stably levitated at any height from 0.2 mm to 0.8 mm by adjusting the vertical position of the nozzles. With the hybrid levitation structure, it's possible to overcome the structural limitation of typical diamagnetically stabilized levitation structure and enhance the working performance of the rotor. This levitation structure is expected to be applied to sensing, energy harvesting and air bearing under actuation of airflow.
引用
收藏
页码:341 / 354
页数:14
相关论文
共 23 条
  • [1] Modeling and experimentation of a passive low frequency nanoforce sensor based on diamagnetic levitation
    Abadie, J.
    Piat, E.
    Oster, S.
    Boukallel, M.
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2012, 173 (01) : 227 - 237
  • [2] Floating body in the electric and magnetic field
    Braunbek, Werner
    [J]. ZEITSCHRIFT FUR PHYSIK, 1939, 112 (11-12): : 753 - 763
  • [3] Design of a Low-Cost Air Levitation System for Teaching Control Engineering
    Chacon, Jesus
    Saenz, Jacobo
    de la Torre, Luis
    Manuel Diaz, Jose
    Esquembre, Francisco
    [J]. SENSORS, 2017, 17 (10)
  • [4] Earnshaw S., 1842, T CAMBRIDGE PHILOS S, V7, P112
  • [5] High-precision motion of magnetic microrobot with ultrasonic levitation for 3-D rotation of single oocyte
    Feng, Lin
    Di, Pei
    Arai, Fumihito
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (12) : 1445 - 1458
  • [6] Franklin WS, 1916, SCI MON, V2, P174
  • [7] Safe Experimentation in Optical Levitation of Charged Droplets Using Remote Labs
    Galan, Daniel
    Isaksson, Oscar
    Enger, Jonas
    Rostedt, Mats
    Johansson, Andreas
    Hanstorp, Dag
    de la Torre, Luis
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (143):
  • [8] Design and Analysis of a Bistable Vibration Energy Harvester Using Diamagnetic Levitation Mechanism
    Gao, Qiu-Hua
    Zhang, Wen-Ming
    Zou, Hong-Xiang
    Li, Wen-Bo
    Peng, Zhi-Ke
    Meng, Guang
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (10)
  • [9] Effect of horizontal positioning control on levitation performance of magnetically levitated steel plate
    Kida, Masahiro
    Oda, Yoshiho
    Suzuki, Toshiki
    Narita, Takayoshi
    Kato, Hideaki
    Moriyama, Hiroyuki
    [J]. INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2019, 59 (03) : 1011 - 1018
  • [10] Ultra-flat bismuth films for diamagnetic levitation by template-stripping
    Kokorian, J.
    Engelen, J. B. C.
    de Vries, J.
    Nazeer, H.
    Woldering, L. A.
    Abelmann, L.
    [J]. THIN SOLID FILMS, 2014, 550 : 298 - 304