Fractional Fokker-Planck Equations for Subdiffusion with Space- and Time-Dependent Forces

被引:107
作者
Henry, B. I. [1 ]
Langlands, T. A. M. [2 ]
Straka, P.
机构
[1] Univ New S Wales, Dept Appl Math, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ So Queensland, Dept Math & Comp, Toowoomba, Qld 4350, Australia
基金
澳大利亚研究理事会;
关键词
RANDOM-WALKS; ANOMALOUS DIFFUSION;
D O I
10.1103/PhysRevLett.105.170602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a fractional Fokker-Planck equation for subdiffusion in a general space- and time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a generalized master equation and is shown to be equivalent to a subordinated stochastic Langevin equation.
引用
收藏
页数:4
相关论文
共 22 条
[1]   Experimental Quenching of Harmonic Stimuli: Universality of Linear Response Theory [J].
Allegrini, Paolo ;
Bologna, Mauro ;
Fronzoni, Leone ;
Grigolini, Paolo ;
Silvestri, Ludovico .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[2]  
[Anonymous], 2009, Levy processes and stochastic calculus
[3]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[4]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[5]   Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving [J].
Heinsalu, E. ;
Patriarca, M. ;
Goychuk, I. ;
Haenggi, P. .
PHYSICAL REVIEW LETTERS, 2007, 99 (12)
[6]   Fractional Fokker-Planck subdiffusion in alternating force fields [J].
Heinsalu, E. ;
Patriarca, M. ;
Goychuk, I. ;
Haenggi, P. .
PHYSICAL REVIEW E, 2009, 79 (04)
[7]  
HENRY BI, 2010, LECT NOTES COMPLEX S, V9, P37
[8]   Fractional translational diffusion of a Brownian particle in a double well potential [J].
Kalmykov, Yuri P. ;
Coffey, William T. ;
Titov, Serguey V. .
PHYSICAL REVIEW E, 2006, 74 (01)
[9]   Linear response characteristics in time-dependent subdiffusive fractional Fokker-Planck equations [J].
Kang, Yan-Mei ;
Jiang, Yao-Lin .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
[10]   Fractional chemotaxis diffusion equations [J].
Langlands, T. A. M. ;
Henry, B. I. .
PHYSICAL REVIEW E, 2010, 81 (05)