Characterization of the complete mitochondrial genome of Phymatostetha huangshanensis (Hemiptera: Cercopidae) and phylogenetic analysis

被引:13
作者
Su, Tianjuan [1 ,2 ]
Liang, Aiping [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Zool, Key Lab Zool Systemat & Evolut, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Cercopoidea; Mitochondrial genome; Phylogeny; MAXIMUM-LIKELIHOOD; SEQUENCE; CICADOMORPHA; INSECTA; CERCOPOIDEA; EVOLUTION; PATTERNS; GENETICS; MODEL;
D O I
10.1016/j.ijbiomac.2018.07.135
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The circular mitochondrial genome (mitogenome) of Phymatostetha huangshanensis is 17,785 bp long. It contains the typical set of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a large control region. The gene organization, nucleotide composition, and codon usage are similar to other Cercopoidea mitogenomes. However, the control region, including multiple types of tandem repeats, is longer than those of other spittlebugs. All PCGs initiate with standard start codon of ATN or 17G and share the complete stop codon of TAA or TAG, whereas cox2 and cox3 end with a single T. All tRNAs have the typical clover-leaf structure except for trnS1. In addition, the unpaired nucleotide is detected in the anticodon stem of trnS1 and the acceptor stem of trnR. The secondary structures of rrnL and rrnS comprise 44 helices and 27 helices, respectively. Phylogenetic analysis is performed on the 13 PCGs and two rRNAs of 24 Cicadomorpha mitogenomes. Both the maximum likelihood and Bayesian methods robustly support the relationships of (Membracoidea + (Cicadoidea + Cercopoidea)). Within Cercopoidea, the monophyly of Cercopidae is also supported. Furthermore, we firstly present the taxonomic status of Phymatostetha with the relationships of (Cosmoscarta + (Phymatostetha + Paphnutius)). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 69
页数:10
相关论文
共 50 条
[2]  
Ayres DL, 2012, SYST BIOL, V61, P170, DOI [10.1093/sysbio/syr100, 10.1093/sysbio/sys029]
[3]   Tandem repeats finder: a program to analyze DNA sequences [J].
Benson, G .
NUCLEIC ACIDS RESEARCH, 1999, 27 (02) :573-580
[4]   MITOS: Improved de novo metazoan mitochondrial genome annotation [J].
Bernt, Matthias ;
Donath, Alexander ;
Juehling, Frank ;
Externbrink, Fabian ;
Florentz, Catherine ;
Fritzsch, Guido ;
Puetz, Joern ;
Middendorf, Martin ;
Stadler, Peter F. .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2013, 69 (02) :313-319
[5]   Animal mitochondrial genomes [J].
Boore, JL .
NUCLEIC ACIDS RESEARCH, 1999, 27 (08) :1767-1780
[6]   Gene translocation links insects and crustaceans [J].
Boore, JL ;
Lavrov, DV ;
Brown, WM .
NATURE, 1998, 392 (6677) :667-668
[7]   The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths [J].
Cameron, Stephen L. ;
Whiting, Michael F. .
GENE, 2008, 408 (1-2) :112-123
[8]   Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny [J].
Cameron, Stephen L. .
ANNUAL REVIEW OF ENTOMOLOGY, VOL 59, 2014, 2014, 59 :95-117
[9]   The Comparative RNA Web (CRW) Site:: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs:: Correction (vol 3, pg 2, 2002) -: art. no. 15 [J].
Cannone, JJ ;
Subramanian, S ;
Schnare, MN ;
Collett, JR ;
D'Souza, LM ;
Du, YS ;
Feng, B ;
Lin, N ;
Madabusi, LV ;
Müller, KM ;
Pande, N ;
Shang, ZD ;
Yu, N ;
Gutell, RR .
BMC BIOINFORMATICS, 2002, 3 (1)
[10]   Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis [J].
Castresana, J .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (04) :540-552