An adhesive contact problem for an incompressible non-homogeneous elastic halfspace

被引:23
作者
Selvadurai, A. P. S. [1 ]
Katebi, A. [1 ]
机构
[1] McGill Univ, Dept Civil Engn & Appl Mech, Montreal, PQ H3A 0C3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CIRCULAR PLATE; ANCHOR PLATE; MINDLINS PROBLEM; INTERFACE; INCLUSION; STIFFNESS; ELEMENT; CRACK; DISPLACEMENTS; FRACTURE;
D O I
10.1007/s00707-014-1171-8
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral equations that cannot be solved easily by conventional integral transform techniques proposed in the literature. In this paper, we adopt a computational scheme where the contact normal and contact shear stress distributions are approximated by their discretized equivalents. The consideration of compatibility of deformations due to the indentation by a rigid indenter in adhesive contact gives a set of algebraic equations that yield the discretized equivalents of the contacts stresses and the axial stiffness of the medium.
引用
收藏
页码:249 / 265
页数:17
相关论文
共 57 条
[1]  
[Anonymous], 2003, KONTINUUMS KONTAKTME
[2]  
[Anonymous], J THEOR APPL MECH
[3]  
[Anonymous], 2000, Partial Differential Equations in Mechanics
[4]  
[Anonymous], 1980, CONTACT PROBLEMS CLA, DOI [10.1007/978-94-009-9127-9, DOI 10.1007/978-94-009-9127-9]
[5]  
Boussinesq J., 1885, Application des potentiels a l'etude de l'equilibre et du mouvement des solides elastiques
[6]   Axisymmetric Loading of a Class of Inhomogeneous Transversely Isotropic Half-Spaces with Quadratic Elastic Moduli [J].
Clements, D. L. ;
Kusuma, J. .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2011, 64 (01) :25-46
[7]   ANTIPLANE CRACK PROBLEMS FOR AN INHOMOGENEOUS ELASTIC-MATERIAL [J].
CLEMENTS, DL ;
ATKINSON, C ;
ROGERS, C .
ACTA MECHANICA, 1978, 29 (1-4) :199-211
[8]  
Galin L.A., 1961, CONTACT PROBLEMS THE
[9]   SOME RESULTS CONCERNING DISPLACEMENTS AND STRESSES IN A NON-HOMOGENEOUS ELASTIC HALF-SPACE [J].
GIBSON, RE .
GEOTECHNIQUE, 1967, 17 (01) :58-&
[10]  
Hertz H., 1882, J REINE ANGEW MATH, V92, P156, DOI DOI 10.1515/CRLL.1882.92.156