共 50 条
Augmented Efficient BackProp for Backpropagation Learning in Deep Autoassociative Neural Networks
被引:0
作者:
Embrechts, Mark J.
[1
]
Hargis, Blake J.
[1
]
Linton, Jonathan D.
[2
]
机构:
[1] Rensselaer Polytech Inst, Dept Ind & Syst Engn, Troy, NY 12180 USA
[2] Univ Ottawa, Sch Management, Ottawa, ON K1N 6N5, Canada
来源:
2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010
|
2010年
基金:
加拿大自然科学与工程研究理事会;
关键词:
PRINCIPAL COMPONENT ANALYSIS;
NONLINEAR PCA;
ALGORITHM;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
We introduce Augmented Efficient BackProp as a strategy for applying the backpropagation algorithm to deep autoencoders, i.e., autoassociators with many hidden layers, without relying on a weight initialization using restricted Boltzmann machines. This training method is an extension of Efficient BackProp, first proposed by LeCun et al. [1], and is benchmarked on three different types of application datasets.
引用
收藏
页数:6
相关论文
共 50 条