Augmented Efficient BackProp for Backpropagation Learning in Deep Autoassociative Neural Networks

被引:0
作者
Embrechts, Mark J. [1 ]
Hargis, Blake J. [1 ]
Linton, Jonathan D. [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Ind & Syst Engn, Troy, NY 12180 USA
[2] Univ Ottawa, Sch Management, Ottawa, ON K1N 6N5, Canada
来源
2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010 | 2010年
基金
加拿大自然科学与工程研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; NONLINEAR PCA; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Augmented Efficient BackProp as a strategy for applying the backpropagation algorithm to deep autoencoders, i.e., autoassociators with many hidden layers, without relying on a weight initialization using restricted Boltzmann machines. This training method is an extension of Efficient BackProp, first proposed by LeCun et al. [1], and is benchmarked on three different types of application datasets.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Transfer learning approach in deep neural networks for uterine fibroid detection [J].
Sundar, Sumod ;
Sumathy, S. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2022, 25 (01) :52-63
[32]   Learning regularization parameters of inverse problems via deep neural networks [J].
Afkham, Babak Maboudi ;
Chung, Julianne ;
Chung, Matthias .
INVERSE PROBLEMS, 2021, 37 (10)
[33]   Cancers classification based on deep neural networks and emotional learning approach [J].
Jafarpisheh, Noushin ;
Teshnehlab, Mohammad .
IET SYSTEMS BIOLOGY, 2018, 12 (06) :258-263
[34]   Direct learning-based deep spiking neural networks: a review [J].
Guo, Yufei ;
Huang, Xuhui ;
Ma, Zhe .
FRONTIERS IN NEUROSCIENCE, 2023, 17
[35]   Improved Particle Swarm Optimization Combined with Backpropagation for Feedforward Neural Networks [J].
Han, Fei ;
Zhu, Jian-Sheng .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2013, 28 (03) :271-288
[36]   An Efficient Framework to Detect Intracranial Hemorrhage Using Hybrid Deep Neural Networks [J].
Rajagopal, Manikandan ;
Buradagunta, Suvarna ;
Almeshari, Meshari ;
Alzamil, Yasser ;
Ramalingam, Rajakumar ;
Ravi, Vinayakumar .
BRAIN SCIENCES, 2023, 13 (03)
[37]   Distributed parallel deep learning with a hybrid backpropagation-particle swarm optimization for community detection in large complex networks [J].
Al-Andoli, Mohammed Nasser ;
Tan, Shing Chiang ;
Cheah, Wooi Ping .
INFORMATION SCIENCES, 2022, 600 :94-117
[38]   Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits [J].
Krestinskaya, Olga ;
Salama, Khaled Nabil ;
James, Alex Pappachen .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (02) :719-732
[39]   Optimizing coverage in wireless sensor networks using deep reinforcement learning with graph neural networks [J].
Pushpa, G. ;
Babu, R. Anand ;
Subashree, S. ;
Senthilkumar, S. .
SCIENTIFIC REPORTS, 2025, 15 (01)
[40]   Learning viscoelasticity models from indirect data using deep neural networks [J].
Xu, Kailai ;
Tartakovsky, Alexandre M. ;
Burghardt, Jeff ;
Darve, Eric .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 387