Augmented Efficient BackProp for Backpropagation Learning in Deep Autoassociative Neural Networks

被引:0
作者
Embrechts, Mark J. [1 ]
Hargis, Blake J. [1 ]
Linton, Jonathan D. [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Ind & Syst Engn, Troy, NY 12180 USA
[2] Univ Ottawa, Sch Management, Ottawa, ON K1N 6N5, Canada
来源
2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010 | 2010年
基金
加拿大自然科学与工程研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; NONLINEAR PCA; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Augmented Efficient BackProp as a strategy for applying the backpropagation algorithm to deep autoencoders, i.e., autoassociators with many hidden layers, without relying on a weight initialization using restricted Boltzmann machines. This training method is an extension of Efficient BackProp, first proposed by LeCun et al. [1], and is benchmarked on three different types of application datasets.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Learning long-term dependencies in segmented-memory recurrent neural networks with backpropagation of error
    Gluege, Stefan
    Boeck, Ronald
    Palm, Guenther
    Wendemuth, Andreas
    NEUROCOMPUTING, 2014, 141 : 54 - 64
  • [22] Optimal memory-aware backpropagation of deep join networks
    Beaumont, Olivier
    Herrmann, Julien
    Pallez , Guillaume
    Shilova, Alena
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2166):
  • [23] Reverberant speech recognition combining deep neural networks and deep autoencoders augmented with a phone-class feature
    Mimura, Masato
    Sakai, Shinsuke
    Kawahara, Tatsuya
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2015,
  • [24] Approximate Softmax Functions for Energy-Efficient Deep Neural Networks
    Chen, Ke
    Gao, Yue
    Waris, Haroon
    Liu, Weiqiang
    Lombardi, Fabrizio
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2023, 31 (01) : 4 - 16
  • [25] Noise can speed backpropagation learning and deep bidirectional pretraining
    Kosko, Bart
    Audhkhasi, Kartik
    Osoba, Osonde
    NEURAL NETWORKS, 2020, 129 (129) : 359 - 384
  • [26] Peak load forecasting using Bayesian regularization, Resilient and adaptive backpropagation learning based artificial neural networks
    Saini, Lalit Mohan
    ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (07) : 1302 - 1310
  • [27] Shallow Deep Learning: Embedding Verbatim K-Means in Deep Neural Networks
    Du, Len
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 194 - +
  • [28] Efficient Compressed Sensing for Wireless Neural Recording: A Deep Learning Approach
    Sun, Biao
    Feng, Hui
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (06) : 863 - 867
  • [29] Hierarchical deep-learning neural networks: finite elements and beyond
    Zhang, Lei
    Cheng, Lin
    Li, Hengyang
    Gao, Jiaying
    Yu, Cheng
    Domel, Reno
    Yang, Yang
    Tang, Shaoqiang
    Liu, Wing Kam
    COMPUTATIONAL MECHANICS, 2021, 67 (01) : 207 - 230
  • [30] Deep neural networks to predict diabetic retinopathy
    Gadekallu, Thippa Reddy
    Khare, Neelu
    Bhattacharya, Sweta
    Singh, Saurabh
    Maddikunta, Praveen Kumar Reddy
    Srivastava, Gautam
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 14 (5) : 5407 - 5420