Augmented Efficient BackProp for Backpropagation Learning in Deep Autoassociative Neural Networks

被引:0
作者
Embrechts, Mark J. [1 ]
Hargis, Blake J. [1 ]
Linton, Jonathan D. [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Ind & Syst Engn, Troy, NY 12180 USA
[2] Univ Ottawa, Sch Management, Ottawa, ON K1N 6N5, Canada
来源
2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010 | 2010年
基金
加拿大自然科学与工程研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; NONLINEAR PCA; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Augmented Efficient BackProp as a strategy for applying the backpropagation algorithm to deep autoencoders, i.e., autoassociators with many hidden layers, without relying on a weight initialization using restricted Boltzmann machines. This training method is an extension of Efficient BackProp, first proposed by LeCun et al. [1], and is benchmarked on three different types of application datasets.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Learning long-term dependencies in segmented-memory recurrent neural networks with backpropagation of error [J].
Gluege, Stefan ;
Boeck, Ronald ;
Palm, Guenther ;
Wendemuth, Andreas .
NEUROCOMPUTING, 2014, 141 :54-64
[22]   Optimal memory-aware backpropagation of deep join networks [J].
Beaumont, Olivier ;
Herrmann, Julien ;
Pallez , Guillaume ;
Shilova, Alena .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2166)
[23]   Reverberant speech recognition combining deep neural networks and deep autoencoders augmented with a phone-class feature [J].
Mimura, Masato ;
Sakai, Shinsuke ;
Kawahara, Tatsuya .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2015,
[24]   Approximate Softmax Functions for Energy-Efficient Deep Neural Networks [J].
Chen, Ke ;
Gao, Yue ;
Waris, Haroon ;
Liu, Weiqiang ;
Lombardi, Fabrizio .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2023, 31 (01) :4-16
[25]   Noise can speed backpropagation learning and deep bidirectional pretraining [J].
Kosko, Bart ;
Audhkhasi, Kartik ;
Osoba, Osonde .
NEURAL NETWORKS, 2020, 129 :359-384
[26]   Peak load forecasting using Bayesian regularization, Resilient and adaptive backpropagation learning based artificial neural networks [J].
Saini, Lalit Mohan .
ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (07) :1302-1310
[27]   Shallow Deep Learning: Embedding Verbatim K-Means in Deep Neural Networks [J].
Du, Len .
2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, :194-+
[28]   Efficient Compressed Sensing for Wireless Neural Recording: A Deep Learning Approach [J].
Sun, Biao ;
Feng, Hui .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (06) :863-867
[29]   Deep neural networks to predict diabetic retinopathy [J].
Gadekallu, Thippa Reddy ;
Khare, Neelu ;
Bhattacharya, Sweta ;
Singh, Saurabh ;
Maddikunta, Praveen Kumar Reddy ;
Srivastava, Gautam .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 14 (5) :5407-5420
[30]   Hierarchical deep-learning neural networks: finite elements and beyond [J].
Zhang, Lei ;
Cheng, Lin ;
Li, Hengyang ;
Gao, Jiaying ;
Yu, Cheng ;
Domel, Reno ;
Yang, Yang ;
Tang, Shaoqiang ;
Liu, Wing Kam .
COMPUTATIONAL MECHANICS, 2021, 67 (01) :207-230