Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar

被引:10
作者
Refaat, Tamer F.
Ismail, Syed
Mack, Terry L.
Abedin, M. Nurul
Mayor, Shane D.
Spuler, Scott M.
Singh, Upendra N.
机构
[1] Old Dominion Univ, Appl Res Ctr, Newport News, VA 23606 USA
[2] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23681 USA
[3] NASA, Langley Res Ctr, Pass sensor Syst Branch, Hampton, VA 23681 USA
[4] Natl Ctr Atmospher Res, Div Atmospher Technol, Boulder, CO 80307 USA
[5] NASA, Langley Res Ctr, Syst Engn Directorate, Hampton, VA 23681 USA
基金
美国国家航空航天局;
关键词
phototransistor; InGaAsSb; remote sensing; lidar; carbon dioxide; ALGAASSB/INGAASSB PHOTOTRANSISTORS; SENSITIVITY ANALYSIS; WATER-VAPOR; MU-M; RANGE;
D O I
10.1117/1.2772280
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An InGaAsSb/AlGaAsSb phototransistor has been validated for lidar atmospheric remote sensing. The validation was performed using the Raman-shifted eye-safe aerosol lidar (REAL) at the National Center for Atmospheric Research. Although the device is optimized for detection around the 2-mu m wavelength, the validation was performed at 1.543 mu m, where mature commercial detectors are available. Simultaneous measurement of the atmospheric backscatter signals using the custom-built phototransistor and commercial InGaAs avalanche photodiode indicated good agreement between both devices. The validation included detecting 11-km-range hard targets, 5-km atmospheric structure consisting of cirrus clouds, and a near-field boundary layer. Far-field low intensity and spatially narrow atmospheric features were also detectable with the new phototransistor. Preliminary results related to systematic effects are discussed in the first attempt of incorporating a phototransistor in a lidar system. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页数:8
相关论文
共 20 条
  • [1] AlGaAsSb-InGaAsSbHPTs with high optical gain and wide dynamic range
    Abedin, MN
    Refaat, TF
    Sulima, OV
    Singh, UN
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (12) : 2013 - 2018
  • [2] Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region
    Ambrico, PF
    Amodeo, A
    Di Girolamo, P
    Spinelli, N
    [J]. APPLIED OPTICS, 2000, 39 (36) : 6847 - 6865
  • [3] Andreev I. A., 1988, Soviet Technical Physics Letters, V14, P435
  • [4] ANDREEV IA, 1991, SOV PHYS SEMICOND+, V25, P861
  • [5] Benoit J., 1988, Journal of Optical Communications, V9, P55, DOI 10.1515/JOC.1988.9.2.55
  • [6] Comparison among error calculations in differential absorption lidar measurements
    Fiorani, L
    Durieux, E
    [J]. OPTICS AND LASER TECHNOLOGY, 2001, 33 (06) : 371 - 377
  • [7] Godfrey L., 2003, CHOOSING DETECTOR YO
  • [8] *HAM CORP, 2004, CHAR US INFR DET
  • [9] AIRBORNE AND SPACEBORNE LIDAR MEASUREMENTS OF WATER-VAPOR PROFILES - A SENSITIVITY ANALYSIS
    ISMAIL, S
    BROWELL, EV
    [J]. APPLIED OPTICS, 1989, 28 (17): : 3603 - 3615
  • [10] ISMAIL S, 1994, J ATMOS OCEAN TECH, V11, P76, DOI 10.1175/1520-0426(1994)011<0076:RLTDAT>2.0.CO