A local-world heterogeneous model of wireless sensor networks with node and link diversity

被引:28
作者
Li, Shudong [1 ,2 ,3 ]
Li, Lixiang [1 ,2 ]
Yang, Yixian [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Informat Secur Ctr, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Network & Informat Attack & Def Technol, Beijing 100876, Peoples R China
[3] Shandong Inst Business & Technol, Coll Math, Yantai Shandong 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Wireless sensor network; Degree distribution; k(nn)(k); Efficiency; COMPLEX NETWORKS;
D O I
10.1016/j.physa.2010.11.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present a novel local-world model of wireless sensor networks (WSN) with two kinds of nodes: sensor nodes and sink nodes, which is different from other models with identical nodes and links. The model balances energy consumption by limiting the connectivity of sink nodes to prolong the life of the network. How the proportion of sink nodes, different energy distribution and the local-world scale would affect the topological structure and network performance are investigated. We find that, using mean-field theory, the degree distribution is obtained as an integral with respect to the proportion of sink nodes and energy distribution. We also show that, the model exhibits a mixed connectivity correlation which is greatly distinct from general networks. Moreover, from the perspective of the efficiency and the average hops for data processing, we find some suitable range of the proportion p of sink nodes would make the network model have optimal performance for data processing. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1182 / 1191
页数:10
相关论文
共 36 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Internet -: Diameter of the World-Wide Web [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 1999, 401 (6749) :130-131
[3]   Energy conservation in wireless sensor networks: A survey [J].
Anastasi, Giuseppe ;
Conti, Marco ;
Di Francesco, Mario ;
Passarella, Andrea .
AD HOC NETWORKS, 2009, 7 (03) :537-568
[4]   A line in the sand: a wireless sensor network for target detection, classification, and tracking [J].
Arora, A ;
Dutta, P ;
Bapat, S ;
Kulathumani, V ;
Zhang, H ;
Naik, V ;
Mittal, V ;
Cao, H ;
Demirbas, M ;
Gouda, M ;
Choi, Y ;
Herman, T ;
Kulkarni, S ;
Arumugam, U ;
Nesterenko, M ;
Vora, A ;
Miyashita, M .
COMPUTER NETWORKS, 2004, 46 (05) :605-634
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]   Competition and multiscaling in evolving networks [J].
Bianconi, G ;
Barabási, AL .
EUROPHYSICS LETTERS, 2001, 54 (04) :436-442
[7]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[8]   Absence of epidemic threshold in scale-free networks with degree correlations -: art. no. 028701 [J].
Boguñá, M ;
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4-028701
[9]   An Overview on Wireless Sensor Networks Technology and Evolution [J].
Buratti, Chiara ;
Conti, Andrea ;
Dardari, Davide ;
Verdone, Roberto .
SENSORS, 2009, 9 (09) :6869-6896
[10]  
CHEN LJ, 2007, WCNC, V556, P3003