Spectrum Occupancy Prediction for Internet of Things via Long Short-Term Memory

被引:0
|
作者
Li, Haoyu [1 ]
Ding, Xiaojin [1 ,2 ,3 ]
Yang, Yiguang [1 ]
Huang, Xiaogu [1 ]
Zhang, Genxin [1 ]
机构
[1] NUPT, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing, Peoples R China
[2] NUPT, Jiangsu Engn Res Ctr Commun & Network Technol, Nanjing, Peoples R China
[3] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
来源
2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW) | 2019年
基金
中国国家自然科学基金;
关键词
Internet of things; spectrum occupancy prediction; deep learning; long short-term memory;
D O I
10.1109/icce-tw46550.2019.8991968
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the development of Internet of things (IoT), the demand on spectrum is increasing rapidly. Moreover, due to lack of power and the feature of short burst, the signals of IoT may be transmitted relying on accessing the idle spectrum, leading to a higher successful transmitting probability. Thus, the spectrum should be allocated in advance for the ongoing terminals of IoT. In this paper, a long short-term memory aided spectrum-prediction (LSTMSP) scheme has been conceived by analyzing the relationships between time and frequency of historical spectrum data. Performance evaluations on real-world spectrum data show that the accuracy of the spectrum occupancy prediction is above 0.7, demonstrating the benefits of the conceived LSTMSP method.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Short-term Individual Electric Vehicle Charging Behavior Prediction Using Long Short-term Memory Networks
    Khwaja, Ahmed S.
    Venkatesh, Bala
    Anpalagan, Alagan
    2020 IEEE 25TH INTERNATIONAL WORKSHOP ON COMPUTER AIDED MODELING AND DESIGN OF COMMUNICATION LINKS AND NETWORKS (CAMAD), 2020,
  • [32] Host load prediction with long short-term memory in cloud computing
    Binbin Song
    Yao Yu
    Yu Zhou
    Ziqiang Wang
    Sidan Du
    The Journal of Supercomputing, 2018, 74 : 6554 - 6568
  • [33] Host load prediction with long short-term memory in cloud computing
    Song, Binbin
    Yu, Yao
    Zhou, Yu
    Wang, Ziqiang
    Du, Sidan
    JOURNAL OF SUPERCOMPUTING, 2018, 74 (12) : 6554 - 6568
  • [34] A long short-term memory based wind power prediction method
    Huang, Yufeng
    Ding, Min
    Fang, Zhijian
    Wang, Qingyi
    Tan, Zhili
    Lil, Danyun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5927 - 5932
  • [35] Using Long Short-Term Memory for Wavefront Prediction in Adaptive Optics
    Liu, Xuewen
    Morris, Tim
    Saunter, Chris
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 537 - 542
  • [36] Short-term Load Forecasting with Distributed Long Short-Term Memory
    Dong, Yi
    Chen, Yang
    Zhao, Xingyu
    Huang, Xiaowei
    2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,
  • [37] Simplified long short-term memory model for robust and fast prediction
    Liu, Yong
    Hao, Xin
    Zhang, Biling
    Zhang, Yuyan
    PATTERN RECOGNITION LETTERS, 2020, 136 (136) : 81 - 86
  • [38] Prediction of pedestrian trajectory based on long short-term memory of data
    Ono, Tomoya
    Kanamaru, Takashi
    2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 1676 - 1679
  • [39] An Improved Long Short-Term Memory Algorithm for Cardiovascular Disease Prediction
    Revathi, T. K.
    Balasubramaniam, Sathiyabhama
    Sureshkumar, Vidhushavarshini
    Dhanasekaran, Seshathiri
    DIAGNOSTICS, 2024, 14 (03)
  • [40] LIPREADING WITH LONG SHORT-TERM MEMORY
    Wand, Michael
    Koutnik, Jan
    Schmidhuber, Jurgen
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 6115 - 6119