Identifying Absorbing Aerosols Above Clouds From the Spinning Enhanced Visible and Infrared Imager Coupled With NASA A-Train Multiple Sensors

被引:13
作者
Chang, Ian [1 ]
Christopher, Sundar A. [1 ,2 ]
机构
[1] Univ Alabama Huntsville, Dept Atmospher Sci, Huntsville, AL 35805 USA
[2] Univ Alabama Huntsville, Ctr Earth Syst Sci, Huntsville, AL 35805 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 06期
关键词
Aerosols above clouds; algorithm; NASA A-Train; Spinning Enhanced Visible and Infrared Imager (SEVIRI); METEOSAT 2ND-GENERATION MSG; OPTICAL DEPTH; MODIS; CALIOP; RETRIEVAL; SEVIRI; OCEAN; SMOKE; IDENTIFICATION; STRATOCUMULUS;
D O I
10.1109/TGRS.2015.2513015
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Geostationary satellite data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) in conjunction with A-Train data are used to develop an algorithm for detecting biomass-burning smoke aerosols above closed-cell stratocumulus (Sc) clouds. The detection relies on spectral signatures, textural characteristics, and time-dependent spectral variation of SEVIRI data. A-Train data including the Ozone Monitoring Instrument (OMI) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) are used as reference data for the SEVIRI algorithm development. The 15-min repeat cycle of SEVIRI provides the capability for identifying smoke above closed-cell Sc with an OMI aerosol index value exceeding 0.5 and a cloud optical thickness greater than 6 at 0.81 mu m. The user accuracy of this algorithm is similar to 49% when using only spectral signature and textural tests. When incorporating the "temporal consistency" tests into the algorithm, the user accuracy increases to similar to 65%. The producer accuracy is over similar to 77%, implying that the SEVIRI algorithm generally identifies smoke above clouds when CALIOP also identifies the same feature at the collocated pixel. However, CALIOP has the tendency to underestimate the presence of thin smoke aerosols above liquid clouds during daytime. This algorithm can be used to detect and study the daytime variation of smoke above liquid clouds.
引用
收藏
页码:3163 / 3173
页数:11
相关论文
共 57 条
  • [31] Ricchiazzi P, 1998, B AM METEOROL SOC, V79, P2101, DOI 10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO
  • [32] 2
  • [33] Fire detection and fire characterization over Africa using Meteosat SEVIRI
    Roberts, Gareth J.
    Wooster, Martin J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (04): : 1200 - 1218
  • [34] Identification of dust outbreaks on infrared MSG-SEVIRI data by using a Robust Satellite Technique (RST)
    Sannazzaro, Filomena
    Filizzola, Carolina
    Marchese, Francesco
    Corrado, Rosita
    Paciello, Rossana
    Mazzeo, Giuseppe
    Pergola, Nicola
    Tramutoli, Valerio
    [J]. ACTA ASTRONAUTICA, 2014, 93 : 64 - 70
  • [35] A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data
    Satheesh, SK
    Ramanathan, V
    Xu, LJ
    Lobert, JM
    Podgorny, IA
    Prospero, JM
    Holben, BN
    Loeb, NG
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D22) : 27421 - 27440
  • [36] Schmetz J, 2002, B AM METEOROL SOC, V83, P977, DOI 10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO
  • [37] 2
  • [38] Pockets of open cells and drizzle in marine stratocumulus
    Stevens, B
    Vali, G
    Comstock, K
    Wood, R
    van Zanten, MC
    Austin, PH
    Bretherton, CS
    Lenschow, DH
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2005, 86 (01) : 51 - 57
  • [39] Takemura T, 2002, J CLIMATE, V15, P333, DOI 10.1175/1520-0442(2002)015<0333:SSAARF>2.0.CO
  • [40] 2