A new strategy of tailoring strength and ductility of CoCrFeNi based high-entropy alloy

被引:69
作者
Zheng, Fukai [1 ,2 ]
Zhang, Guannan [3 ]
Chen, Xiujuan [1 ,2 ]
Yang, Xiao [3 ]
Yang, Zengchao [3 ]
Li, Yong [3 ]
Li, Jiangtao [3 ]
机构
[1] Lanzhou Univ Technol, Coll Mat Sci & Engn, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ Technol, Coll Mechanoelect Engn, Lanzhou 730050, Peoples R China
[3] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Cryogen, Beijing 100190, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2020年 / 774卷
基金
中国国家自然科学基金;
关键词
High entropy alloy; Precipitation strengthening; Mechanical properties; Coherent precipitation; SOLID-SOLUTION; MECHANICAL-PROPERTIES; PRECIPITATION; BEHAVIOR;
D O I
10.1016/j.msea.2020.138940
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, a new strategy of high entropy alloy is presented, high strength and promising ductility are realized by precipitation strengthening mechanism. The structure of nano-L1(2) precipitates on the FCC high entropy alloy (HEA) matrix is formed, by adding Ni and Al with a fixed stoichiometric ratio (keeping Ni: Al = 3:1, Ni3Al) to CoCrFeNi matrix. The study found that the mechanical properties of the alloy can be effectively controlled by optimizing the addition of Ni3Al content. Through tension test and theoretical analysis, we found that, when the addition of Ni3Al reaches 0.75, the HEA exhibits the excellent comprehensive strength and ductility. With the tensile fracture strength, yield strength and elongation are 1200 MPa, 910 MPa, and 14%, respectively. Compared with the CoCrFeNi high entropy alloy without precipitates, the yield strength is increased by three times. TEM analysis and theoretical calculation show that the strengthening mechanism of the second phase is the main factor to improve the properties.
引用
收藏
页数:6
相关论文
共 32 条
  • [1] PRECIPITATION HARDENING
    ARDELL, AJ
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1985, 16 (12): : 2131 - 2165
  • [2] Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-zinc alloys
    Balogh, Levente
    Ungar, Tamas
    Zhao, Yonghao
    Zhu, Y. T.
    Horita, Zenji
    Xu, Cheng
    Langdon, Terence G.
    [J]. ACTA MATERIALIA, 2008, 56 (04) : 809 - 820
  • [3] Fast production of high entropy alloys (CoCrFeNiAlxTiy) by electric current activated sintering system
    Erdogan, Azmi
    Yener, Tuba
    Zeytin, Sakin
    [J]. VACUUM, 2018, 155 : 64 - 72
  • [4] FLEISCHERL, 1966, ACTA METALL MATER, V14, P1867
  • [5] Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures
    Fuller, CB
    Seidman, DN
    Dunand, DC
    [J]. ACTA MATERIALIA, 2003, 51 (16) : 4803 - 4814
  • [6] PRECIPITATION HARDENING BY MISFITTING PARTICLES AND ITS COMPARISON WITH EXPERIMENTS
    GEROLD, V
    PHAM, HM
    [J]. SCRIPTA METALLURGICA, 1979, 13 (09): : 895 - 898
  • [7] THE DEFORMATION AND AGEING OF MILD STEEL .3. DISCUSSION OF RESULTS
    HALL, EO
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1951, 64 (381): : 747 - 753
  • [8] A precipitation-hardened high-entropy alloy with outstanding tensile properties
    He, J. Y.
    Wang, H.
    Huang, H. L.
    Xu, X. D.
    Chen, M. W.
    Wu, Y.
    Liu, X. J.
    Nieh, T. G.
    An, K.
    Lu, Z. P.
    [J]. ACTA MATERIALIA, 2016, 102 : 187 - 196
  • [9] Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures
    He, J. Y.
    Zhu, C.
    Zhou, D. Q.
    Liu, W. H.
    Nieh, T. G.
    Lu, Z. P.
    [J]. INTERMETALLICS, 2014, 55 : 9 - 14
  • [10] Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system
    He, J. Y.
    Liu, W. H.
    Wang, H.
    Wu, Y.
    Liu, X. J.
    Nieh, T. G.
    Lu, Z. P.
    [J]. ACTA MATERIALIA, 2014, 62 : 105 - 113