Structure and strain relaxation mechanisms of ultrathin epitaxial Pr2O3 films on Si(111) -: art. no. 074906

被引:41
作者
Schroeder, T
Lee, TL
Libralesso, L
Joumard, I
Zegenhagen, J
Zaumseil, P
Wenger, C
Lupina, G
Lippert, G
Dabrowski, J
Müssig, HJ
机构
[1] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[2] IHP, D-15236 Frankfurt, Oder, Germany
关键词
D O I
10.1063/1.1883304
中图分类号
O59 [应用物理学];
学科分类号
摘要
The structure of ultrathin epitaxial Pr2O3 films on Si(111) was studied by synchrotron radiation-grazing incidence x-ray diffraction. The oxide film grows as hexagonal Pr2O3 phase with its (0001) plane attached to the Si(111) substrate. The hexagonal (0001) Pr2O3 plane matches the in-plane symmetry of the hexagonal Si(111) surface unit cell by aligning the < 10(1) over bar 0 > Pr2O3 along the < 11(2) over bar > Si directions. The small lattice mismatch of 0.5% results in the growth of pseudomorphic oxide films of high crystalline quality with an average domain size of about 50 nm. The critical thickness t(c) for pseudomorphic growth amounts to 3.0 +/- 0.5 nm. The relaxation of the oxide film from pseudomorphism to bulk behavior beyond t(c) causes the introduction of misfit dislocations, the formation of an in-plane small angle mosaicity structure, and the occurence of a phase transition towards a (111) oriented cubic Pr2O3 film structure. The observed phase transition highlights the influence of the epitaxial interface energy on the stability of Pr2O3 phases on Si(111). A mechanism is proposed which transforms the hexagonal (0001) into the cubic (111) Pr2O3 epilayer structure by rearranging the oxygen network but leaving the Pr sublattice almost unmodified. (C) 2005 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Ferroelectric domain structure in epitaxial BiFeO3 films -: art. no. 182912 [J].
Zavaliche, F ;
Das, RR ;
Kim, DM ;
Eom, CB ;
Yang, SY ;
Shafer, P ;
Ramesh, R .
APPLIED PHYSICS LETTERS, 2005, 87 (18) :1-3
[32]   Structure, twinning behavior, and interface composition of epitaxial Si(111) films on hex- Pr2 O3 (0001)Si(111) support systems [J].
Schroeder, T. (schroeder@ihp-microelectronics.com), 1600, American Institute of Physics Inc. (98)
[33]   Electronic structure evolution during the growth of ultrathin insulator films on semiconductors:: From interface formation to bulklike CaF2/Si(111) films -: art. no. 205336 [J].
Klust, A ;
Ohta, T ;
Bostwick, AA ;
Rotenberg, E ;
Yu, QM ;
Ohuchi, FS ;
Olmstead, MA .
PHYSICAL REVIEW B, 2005, 72 (20)
[34]   Selective etching of epitaxial MnAs films on GaAs(001):: Influence of structure and strain -: art. no. 013907 [J].
Mohanty, J ;
Takagaki, Y ;
Hesjedal, T ;
Däweritz, L ;
Ploog, KH .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (01)
[35]   Structural transitions and relaxation processes during the epitaxial growth of ultrathin CaF2 films on Si(111) [J].
Deiter, Carsten ;
Bierkandt, Markus ;
Klust, Andreas ;
Kumpf, Christian ;
Su, Yixi ;
Bunk, Oliver ;
Feidenhans'l, Robert ;
Wollschlaeger, Joachim .
PHYSICAL REVIEW B, 2010, 82 (08)
[36]   Complex interface and growth analysis of single crystalline epi-Si(111)/Y2O3/Pr2O3/Si(111) heterostructures: Strain engineering by oxide buffer control [J].
Wilke, A. ;
Yang, J. -M. ;
Kim, J. W. ;
Seifarth, O. ;
Dietrich, B. ;
Giussani, A. ;
Zaumseil, P. ;
Storck, P. ;
Schroeder, T. .
SURFACE AND INTERFACE ANALYSIS, 2011, 43 (04) :827-835
[37]   Anisotropic strain relaxation in (Ba0.6Sr0.4)Tio3 epitaxial thin films -: art. no. 103530 [J].
Simon, WK ;
Akdogan, EK ;
Safari, A .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[38]   The effect of strain relaxation mechanisms on the electrical properties of epitaxial CaF2/Si(111) heterostructures [J].
Schowalter, LJ ;
Kim, BM ;
Thundat, TG ;
Ventrice, CA ;
LaBella, VP .
ATOMIC RESOLUTION MICROSCOPY OF SURFACES AND INTERFACES, 1997, 466 :21-26
[39]   MECHANISMS OF STRAIN RELAXATION IN EPITAXIAL CAF2/SI(111) STUDIED WITH ATOMIC FORCE MICROSCOPY [J].
BLUNIER, S ;
ZOGG, H ;
MAISSEN, C ;
TIWARI, AN ;
OVERNEY, RM ;
HAEFKE, H ;
KOSTORZ, G .
HELVETICA PHYSICA ACTA, 1992, 65 (06) :822-823
[40]   Phase diagrams of epitaxial BaTiO3 ultrathin films from first principles -: art. no. 132904 [J].
Lai, BK ;
Kornev, IA ;
Bellaiche, L ;
Salamo, GJ .
APPLIED PHYSICS LETTERS, 2005, 86 (13) :1-3