On Fredholm properties of Toeplitz operators in Bergman spaces

被引:1
作者
Taskinen, Jari [1 ]
Virtanen, Jani [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, FIN-00014 Helsinki, Finland
[2] Univ Reading, Dept Math, Reading, Berks, England
基金
英国工程与自然科学研究理事会;
关键词
Bergman space; compact operator; Fredholm operator; Hankel operator; Toeplitz operator; HANKEL-OPERATORS;
D O I
10.1002/mma.6268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Toepliz operators with integrable symbols acting on Bergman spaces A(p), 1 < p < infinity, of the open unit disc of the complex plane. We combine some of the best known results on compactness of Toeplitz and Hankel operators in order to generalize the results on Fredholm properties of Toeplitz operators. We pay special attention to some concrete examples.
引用
收藏
页码:9405 / 9415
页数:11
相关论文
共 20 条
[2]  
Englis M, 2016, OPER THEORY ADV APPL, V251, P69
[3]  
Fedosov B., 1995, Deformation Quantization and Index Theory
[4]  
Grudsky S., 2013, OPER THEORY ADV APPL, V228, P127
[5]   SOLITON THEORY AND HANKEL OPERATORS [J].
Grudsky, Sergei ;
Rybkin, Alexei .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (03) :2283-2323
[6]  
Hagger R, 1906, ARXIV190609901
[8]  
Hu Z, 2018, HANKEL OPERATORS BER
[9]   CHARACTERIZATIONS OF CERTAIN CLASSES OF HANKEL-OPERATORS ON THE BERGMAN SPACES OF THE UNIT DISK [J].
LUECKING, DH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (02) :247-271
[10]  
Pelaez J, 1806, ARXIV180609854