THE PICARD GROUP OF THE LOOP SPACE OF THE RIEMANN SPHERE

被引:3
作者
Zhang, Ning [1 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
基金
中国国家自然科学基金;
关键词
Loop space; holomorphic line bundle; Picard group; projective embedding; Dolbeault cohomology group;
D O I
10.1142/S0129167X10006471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The loop space LP(1) of the Riemann sphere consisting of all C(k) or Sobolev W(k,p) maps S(1) -> P(1) is an infinite dimensional complex manifold. We compute the Picard group Pic(LP(1)) of holomorphic line bundles on LP(1) as an infinite dimensional complex Lie group with Lie algebra the Dolbeault group H(0,1)(LP(1)). The group G of Mobius transformations and its loop group LG act on LP(1). We prove that an element of Pic(LP(1)) is LG-fixed if it is G-fixed, thus completely answering the question of Millson and Zombro about the G-equivariant projective embedding of LP(1).
引用
收藏
页码:1387 / 1399
页数:13
相关论文
共 10 条