Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications

被引:67
作者
Sahan, Halil [1 ]
Goktepe, Huseyin [1 ]
Patat, Saban [1 ]
Ulgen, Ahmet [1 ]
机构
[1] Erciyes Univ, Dept Chem, Fac Art & Sci, TR-38039 Kayseri, Turkey
关键词
Lithium manganese oxide; Chromium oxide coating; Surface modification; Lithium ion batteries; Cathode materials; CYCLING STABILITY; CAPACITY LOSSES; DISSOLUTION; VOLTAGE; CO; CYCLABILITY; PERFORMANCE; INSERTION; FE; NI;
D O I
10.1016/j.ssi.2010.08.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of the Cr2O3 coating on the charge-discharge cycling performance of spinet powder (LiMn2O4) is investigated in the range of 3.5-4.5 V at 1 C. The Cr2O3 coating on the surface of the spinel powder is carried out using the solution method, followed by 500 degrees C sintering for 6 h in air. Powder X-ray diffraction pattern of the Cr2O3-coated spinel LiMn2O4 shows that the Cr2O3 coating medium is not incorparated in the spinet bulk structure. SEM results show that the Cr2O3 coating particles are homogenously distributed on the surface of LiMn2O4 powder particles. XPS results shows tahat the Cr2O3 coating causes increasing of Mn(IV) concentration at the surface of LiMn2O4 particles. While the bare LiMn2O4 delivered an average capacity loss of 0.22% per cycle in 70 cycles, the 0.5 wt.%, 1 wt.%, 2 wt.% and 3 wt.% Cr2O3-coated LiMn2O4 only showed the average loss of 0.12%, 0.08%, 0.11% and 0.08% per cycle, respectively. The improvement of electrochemical performance is attributed to suppression of Mn2+ dissolution into electrolyte via Cr2O3 layer. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1437 / 1444
页数:8
相关论文
共 41 条
[1]   X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 566 (01) :187-192
[2]   Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance [J].
Amatucci, GG ;
Blyr, A ;
Sigala, C ;
Alfonse, P ;
Tarascon, JM .
SOLID STATE IONICS, 1997, 104 (1-2) :13-25
[3]   Preparation and electrochemical investigation of LiMn2-xMexO4 (Me:Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries [J].
Amine, K ;
Tukamoto, H ;
Yasuda, H ;
Fujita, Y .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :604-608
[4]   Mechanisms of manganese spinels dissolution and capacity fade at high temperature [J].
Aoshima, T ;
Okahara, K ;
Kiyohara, C ;
Shizuka, K .
JOURNAL OF POWER SOURCES, 2001, 97-8 :377-380
[5]  
Armarego W.L. F., 2002, Purification of Laboratory Chemicals, V4th
[6]   Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries [J].
Arumugam, D. ;
Kalaignan, G. Paruthimal .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2008, 624 (1-2) :197-204
[7]   LiMn2-xCoxO4 cathode with enhanced cycleability [J].
Banov, B ;
Todorov, Y ;
Trifonova, A ;
Momchilov, A ;
Manev, V .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :578-581
[8]   Synthesis and characterization of Li2MxMn4-xO8 (M = Co, Fe) as positive active materials for lithium-ion cells [J].
Bonino, F ;
Panero, S ;
Satolli, D ;
Scrosati, B .
JOURNAL OF POWER SOURCES, 2001, 97-8 :389-392
[9]   A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AIPO4 nanoparticles [J].
Cho, J ;
Kim, YW ;
Kim, B ;
Lee, JG ;
Park, B .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (14) :1618-1621
[10]   LiMn2O4 electrode prepared by gold-titanium codeposition with improved cyclability [J].
Eftekhari, A .
JOURNAL OF POWER SOURCES, 2004, 130 (1-2) :260-265