Four-dimensional Zero-Hopf Bifurcation of Quadratic Polynomial Differential System, via Averaging Theory of Third Order

被引:2
|
作者
Djedid, Djamila [1 ]
Bendib, El Ouahma [2 ]
Makhlouf, Amar [1 ]
机构
[1] Univ Annaba, Dept Math, Lab LMA, POB 12, Annaba 23000, Algeria
[2] Univ Skikda 20 August 1955, Lab LMA, Dept Math, POB 12, Annaba 23000, Algeria
关键词
Zero-Hopf bifurcation; Averaging theory; Quadratic polynomial differential system;
D O I
10.1007/s10883-020-09528-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article concerns the zero-Hopf bifurcation of a quadratic polynomial differential system in R-4. By using the averaging theory of third order, we provide that at most 25 limit cycles can bifurcate from one singularity with eigenvalues of the form +/- bi, 0 and 0.
引用
收藏
页码:901 / 916
页数:16
相关论文
共 32 条
  • [21] Limit Cycles of the Three-dimensional Quadratic Differential System via Hopf Bifurcation
    Abddulkareem, Aram A.
    Amen, Azad I.
    Hussein, Niazy H.
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (09) : 2970 - 2983
  • [22] AVERAGING APPROACH TO CYCLICITY OF HOPF BIFURCATION IN PLANAR LINEAR-QUADRATIC POLYNOMIAL DISCONTINUOUS DIFFERENTIAL SYSTEMS
    Chen, Xingwu
    Llibre, Jaume
    Zhang, Weinian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (10): : 3953 - 3965
  • [23] Stability and Hopf bifurcation analysis of a new four-dimensional hyper-chaotic system
    Zhou, Liangqiang
    Zhao, Ziman
    Chen, Fangqi
    MODERN PHYSICS LETTERS B, 2020, 34 (29):
  • [24] Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system
    Wu, Wenjuan
    Chen, Zengqiang
    NONLINEAR DYNAMICS, 2010, 60 (04) : 615 - 630
  • [25] Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system
    Wenjuan Wu
    Zengqiang Chen
    Nonlinear Dynamics, 2010, 60 : 615 - 630
  • [26] Limit cycles bifurcating from a zero-Hopf equilibrium of a 3-dimensional continuous differential system
    Sara Kassa
    Jaume Llibre
    Amar Makhlouf
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 419 - 426
  • [27] HOPF BIFURCATION FOR SOME ANALYTIC DIFFERENTIAL SYSTEMS IN R3 VIA AVERAGING THEORY
    Llibre, Jaume
    Valls, Claudia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (03) : 779 - 790
  • [28] Limit cycles bifurcating from a zero-Hopf equilibrium of a 3-dimensional continuous differential system
    Kassa, Sara
    Llibre, Jaume
    Makhlouf, Amar
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 419 - 426
  • [29] Hopf Bifurcation, Positively Invariant Set, and Physical Realization of a New Four-Dimensional Hyperchaotic Financial System
    Kai, G.
    Zhang, W.
    Wei, Z. C.
    Wang, J. F.
    Akgul, A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [30] Existence of Solutions for a System of Second-order Four-dimensional Differential Equations
    Fu Meifen
    Liu Xiaoyan
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 27 - 31