200 G Outdoor Free-Space-Optics Link Using a Single-Photodiode Receiver

被引:25
作者
Lorences-Riesgo, Abel [1 ]
Guiomar, Fernando P. [1 ]
Sousa, Artur N. [1 ]
Teixeira, Antonio L. [1 ,2 ]
Muga, Nelson J. [1 ]
Medeiros, Maria C. R. [3 ,4 ]
Monteiro, Paulo P. [1 ,2 ]
机构
[1] Univ Santiago, Inst Telecomunicacoes, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Dept Elect Telecommun & Informat DETI, P-3810193 Aveiro, Portugal
[3] Univ Coimbra, Inst Telecomunicaoes, P-3030290 Coimbra, Portugal
[4] Univ Coimbra, Dept Elect & Comp Engn, P-3030290 Coimbra, Portugal
关键词
Free-space optics; Kramers-Kronig receiver; optical communications; DIRECT-DETECTION TRANSMISSION; WIRELESS COMMUNICATION; SYSTEMS;
D O I
10.1109/JLT.2019.2952930
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We experimentally evaluate the performance of Kramers-Kronig (KK) receivers for free-space optical transmission. We transmit a dual-carrier signal, each carrier modulated as a 25 Gbaud 16/32 quadrature-amplitude modulation (QAM) signal. This dual-carrier signal, with overall symbol rate of 50 Gbaud, is detected in a single receiver with about 35 CHz bandwidth. Key parameters such as the carrier-to-signal power ratio, the frequency allocation of the pilot tone, and the frequency separation between both modulated carriers are optimized. In addition, we also study the effect of the receiver bandwidth limitations on the KK technique. We perform long-term measurements, beyond one hour, for both 16 and 32 QAM signals in a 55 m outdoor free-space link during daylight with sunny weather conditions. Our measurements demonstrate that the link operates below the BER threshold assuming 20% forward-error correction (FEC) for the 32QAM signal and 7% FEC overhead for the 16QAM signal. The resulting net data rates are 208 and 184 Gbit/s for the 32 and 16 QAM signals, respectively.
引用
收藏
页码:394 / 400
页数:7
相关论文
共 26 条
  • [1] FSO-Based Vertical Backhaul/Fronthaul Framework for 5G+Wireless Networks
    Alzenad, Mohamed
    Shakir, Muhammad Z.
    Yanikomeroglu, Halim
    Alouini, Mohamed-Slim
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (01) : 218 - 224
  • [2] [Anonymous], 2018, IEEE Photon. J.
  • [3] Optical Wireless MIMO Experiments in an Industrial Environment
    Berenguer, Pablo Wilke
    Schulz, Dominic
    Hilt, Jonas
    Hellwig, Peter
    Kleinpeter, Gerhard
    Fischer, Johannes K.
    Jungnickel, Volker
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (01) : 185 - 193
  • [4] Toward Practical Kramers-Kronig Receiver: Resampling, Performance, and Implementation
    Bo, Tianwai
    Kim, Hoon
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (02) : 461 - 469
  • [5] Chen X., 2018, P EUR C OPT COMM SEP
  • [6] Kramers-Kronig Receivers for 100-km Datacenter Interconnects
    Chen, Xi
    Antonelli, Cristian
    Chandrasekhar, Sethumadhavan
    Raybon, Gregory
    Mecozzi, Antonio
    Shtaif, Mark
    Winzer, Peter
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (01) : 79 - 89
  • [7] Cvijetic N, 2008, 2008 C OPTICAL FIBER
  • [8] Free-space optical wiretap channel and experimental secret key agreement 7.8 km terrestrial link
    Fujiwara, Mikio
    Ito, Toshiyuki
    Kitamura, Mitsuo
    Endo, Hiroyuki
    Tsuzuki, Orie
    Toyoshima, Morio
    Takenaka, Hideki
    Takayama, Yoshihisa
    Shimizu, Ryosuke
    Takeoka, Masahiro
    Matsumoto, Ryutaroh
    Sasaki, Masahide
    [J]. OPTICS EXPRESS, 2018, 26 (15): : 19513 - 19523
  • [9] Giorgetta FR, 2013, NAT PHOTONICS, V7, P435, DOI [10.1038/nphoton.2013.69, 10.1038/NPHOTON.2013.69]
  • [10] Guiomar F.P., 2019, P EUR C OPT COMM SEP, P1, DOI [10.1049/cp.2019.0864, DOI 10.1049/CP.2019.0864]