Bi-Hamiltonian Structure of Spin Sutherland Models: The Holomorphic Case

被引:3
作者
Feher, L. [1 ,2 ]
机构
[1] Univ Szeged, Dept Theoret Phys, Tisza Lajos Krt 84-86, H-6720 Szeged, Hungary
[2] RMKI, WIGNER RCP, Dept Theoret Phys, POB 49, H-1525 Budapest, Hungary
来源
ANNALES HENRI POINCARE | 2021年 / 22卷 / 12期
关键词
GEOMETRY; SYSTEMS; ALGEBRAS; MATRIX;
D O I
10.1007/s00023-021-01084-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a bi-Hamiltonian structure for the holomorphic spin Sutherland hierarchy based on collective spin variables. The construction relies on Poisson reduction of a bi-Hamiltonian structure on the holomorphic cotangent bundle of GL (n, C), which itself arises from the canonical syinplectic structure and the Poisson structure of the Heisenberg double of the standard GL(n, C) Poisson-Lie group. The previously obtained bi-Hamiltonian structures of the hyperbolic and trigonometric real forms are recovered on real slices of the holomorphic spin Sutherland model.
引用
收藏
页码:4063 / 4085
页数:23
相关论文
共 25 条
[1]   DERIVATIVES OF EIGENVALUES AND EIGENVECTORS OF MATRIX FUNCTIONS [J].
ANDREW, AL ;
CHU, KWE ;
LANCASTER, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) :903-926
[2]   Poisson structures of Calogero-Moser and Ruijs']jsenaars-Schneider models [J].
Aniceto, Ines ;
Avan, Jean ;
Jevicki, Antal .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (18)
[3]  
Arutyunov G., 2019, Elements of Classical and Quantum Integrable Systems
[4]  
Babelon O., 2003, Introduction to Classical Integrable Systems, DOI 10.1017/CBO9780511535024
[5]   CLASSICAL R-MATRIX AND EXCHANGE ALGEBRA IN WZNW AND TODA THEORIES [J].
BALOG, J ;
DABROWSKI, L ;
FEHER, L .
PHYSICS LETTERS B, 1990, 244 (02) :227-234
[6]   On the Geometric Origin of the Bi-Hamiltonian Structure of the Calogero-Moser System [J].
Bartocci, Claudio ;
Falqui, Gregorio ;
Mencattini, Igor ;
Ortenzi, Giovanni ;
Pedroni, Marco .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (02) :279-296
[7]  
De Sole A, 2018, COMMUN MATH PHYS, V360, P851, DOI 10.1007/s00220-018-3142-8
[8]   Geometry and classification of solutions of the classical dynamical Yang-Baxter equation [J].
Etingof, P ;
Varchenko, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (01) :77-120
[9]   Bihamiltonian geometry, Darboux coverings, and linearization of the KP hierarchy [J].
Falqui, G ;
Magri, F ;
Pedroni, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (02) :303-324
[10]   Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero-Moser system [J].
Falqui, Gregorio ;
Mencattini, Igor .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 118 :126-137