Least squares estimator for α-sub-fractional bridges

被引:0
作者
Kuang, Nenghui [1 ]
Liu, Bingquan [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
[2] Weinan Normal Univ, Sch Math & Informat Sci, Weinan 714000, Peoples R China
关键词
Least squares estimator; Sub-fractional Brownian motion; alpha-sub-fractional bridge; ORNSTEIN-UHLENBECK PROCESS; BROWNIAN-MOTION; FUNCTIONALS; INTEGRATION; RESPECT; TIME;
D O I
10.1007/s00362-016-0795-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let alpha, T > 0. We investigate the asymptotic properties of a least squares estimator (LSE) for the parameter of alpha sub-fractional bridge defined as dX(t) = -alpha X-t/T-t dt + d S-t(H), O <= t < T, X-o = O, where S-H is a sub-fractional Brownian motion of Hurst parameter H is an element of(1/2, 1). Depending on the value of alpha, we prove that we may have strong consistency or not as t -> T. When we have consistency, we obtain the rate of this convergence as well.
引用
收藏
页码:893 / 912
页数:20
相关论文
共 26 条
[21]   Berry-Esseen bounds and almost sure CLT for the quadratic variation of the sub-fractional Brownian motion [J].
Tudor, Constantin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (02) :667-676
[22]   On the Wiener integral with respect to a sub-fractional Brownian motion on an interval [J].
Tudor, Constantin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) :456-468
[23]  
Yan L., 2011, COMMUN STOCH ANAL, V5, P9, DOI [10.31390/cosa.5.1.09, DOI 10.31390/COSA.5.1.09]
[24]   The generalized Bouleau-Yor identity for a sub-fractional Brownian motion [J].
Yan LiTan ;
He Kun ;
Chen Chao .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (10) :2089-2116
[25]   On the collision local time of sub-fractional Brownian motions [J].
Yan, Litan ;
Shen, Guangjun .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (5-6) :296-308
[26]   An inequality of the holder type, connected with Stieltjes integration. [J].
Young, L. C. .
ACTA MATHEMATICA, 1936, 67 (01) :251-282