Least squares estimator for α-sub-fractional bridges

被引:0
作者
Kuang, Nenghui [1 ]
Liu, Bingquan [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
[2] Weinan Normal Univ, Sch Math & Informat Sci, Weinan 714000, Peoples R China
关键词
Least squares estimator; Sub-fractional Brownian motion; alpha-sub-fractional bridge; ORNSTEIN-UHLENBECK PROCESS; BROWNIAN-MOTION; FUNCTIONALS; INTEGRATION; RESPECT; TIME;
D O I
10.1007/s00362-016-0795-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let alpha, T > 0. We investigate the asymptotic properties of a least squares estimator (LSE) for the parameter of alpha sub-fractional bridge defined as dX(t) = -alpha X-t/T-t dt + d S-t(H), O <= t < T, X-o = O, where S-H is a sub-fractional Brownian motion of Hurst parameter H is an element of(1/2, 1). Depending on the value of alpha, we prove that we may have strong consistency or not as t -> T. When we have consistency, we obtain the rate of this convergence as well.
引用
收藏
页码:893 / 912
页数:20
相关论文
共 26 条
[11]   LOCAL ASYMPTOTIC MIXED NORMALITY FOR SEMIMARTINGALE EXPERIMENTS [J].
LUSCHGY, H .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 92 (02) :151-176
[12]   On a one-parameter generalization of the Brownian bridge and associated quadratic functionals [J].
Mansuy, R .
JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (04) :1021-1029
[13]   Parametric estimation for sub-fractional Ornstein-Uhlenbeck process [J].
Mendy, Ibrahima .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (04) :663-674
[14]  
Nualart David, 2006, The Malliavin Calculus and Related Topics, V1995
[15]   Stochastic integration with respect to the sub-fractional Brownian motion with H ∈ (0,1/2) [J].
Shen, Guangjun ;
Chen, Chao .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (02) :240-251
[16]   Remarks on an integral functional driven by sub-fractional Brownian motion [J].
Shen, Guangjun ;
Yan, Litan .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (03) :337-346
[17]   On the weighted least-squares, the ordinary least-squares and the best linear unbiased estimators under a restricted growth curve model [J].
Song, Guang Jing ;
Wang, Qing Wen .
STATISTICAL PAPERS, 2014, 55 (02) :375-392
[18]  
Tudor C, 2008, SOME ASPECTS STOCHAS, P199
[19]  
Tudor C., 2008, SUBFRACTIONAL BROWNI
[20]  
Tudor C., 2007, STOCHASTICS, V79, P431, DOI DOI 10.1080/17442500601100331