Least squares estimator for α-sub-fractional bridges

被引:0
作者
Kuang, Nenghui [1 ]
Liu, Bingquan [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
[2] Weinan Normal Univ, Sch Math & Informat Sci, Weinan 714000, Peoples R China
关键词
Least squares estimator; Sub-fractional Brownian motion; alpha-sub-fractional bridge; ORNSTEIN-UHLENBECK PROCESS; BROWNIAN-MOTION; FUNCTIONALS; INTEGRATION; RESPECT; TIME;
D O I
10.1007/s00362-016-0795-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let alpha, T > 0. We investigate the asymptotic properties of a least squares estimator (LSE) for the parameter of alpha sub-fractional bridge defined as dX(t) = -alpha X-t/T-t dt + d S-t(H), O <= t < T, X-o = O, where S-H is a sub-fractional Brownian motion of Hurst parameter H is an element of(1/2, 1). Depending on the value of alpha, we prove that we may have strong consistency or not as t -> T. When we have consistency, we obtain the rate of this convergence as well.
引用
收藏
页码:893 / 912
页数:20
相关论文
共 26 条
[1]  
Alos A, 2003, STOCHASTICS STOCHAST, V75, P129
[2]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[3]   Maximum likelihood estimation under a finite mixture of generalized exponential distributions based on censored data [J].
Ateya, Saieed F. .
STATISTICAL PAPERS, 2014, 55 (02) :311-325
[4]   Explicit formulas for Laplace transforms of certain functionals of some time inhomogeneous diffusions [J].
Barczy, M. ;
Pap, G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) :405-424
[5]   α-Wiener Bridges: Singularity of Induced Measures and Sample Path Properties [J].
Barczy, Matyas ;
Pap, Gyula .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2010, 28 (03) :447-466
[6]   Sub-fractional Brownian motion and its relation to occupation times [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STATISTICS & PROBABILITY LETTERS, 2004, 69 (04) :405-419
[7]  
Diedhiou A., 2011, J NUMERICAL MATH STO, V3, P37
[8]  
Es-Sebaiy K, 2011, ARXIV11015790V2
[9]   Parameter estimation for the non-stationary Ornstein-Uhlenbeck process with linear drift [J].
Jiang, Hui ;
Dong, Xing .
STATISTICAL PAPERS, 2015, 56 (01) :257-268
[10]   Remarks on asymptotic behavior of weighted quadratic variation of subfractional Brownian motion [J].
Liu, Junfeng ;
Yan, Litan .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (02) :177-187