Optical noise in a free-space quantum communications link from natural and nuclear disturbed environments*

被引:2
|
作者
Wilson, Brandon A. [1 ]
Miloshevsky, Alexander [2 ,3 ]
Hooper, David A. [4 ]
Grice, Warren [2 ]
Peters, Nicholas A. [2 ]
机构
[1] Oak Ridge Natl Lab, Nucl & Extreme Environm Measurements Grp, Nucl Energy & Fuel Cycle Div, POB 2009, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Quantum Commun & Networking Grp, Computat Sci & Engn Div, POB 2009, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA
[4] Oak Ridge Natl Lab, Nucl Nonproliferat Div, Detonat Forens & Response Grp, POB 2009, Oak Ridge, TN 37831 USA
来源
NEW JOURNAL OF PHYSICS | 2022年 / 24卷 / 06期
关键词
free-space quantum network; optical interference; nuclear detonation; satellite optical link;
D O I
10.1088/1367-2630/ac77f4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Satellite communications at radio frequencies can experience a 'blackout' period following the atmospheric detonation of a nuclear weapon. The wavelengths used for free-space quantum communications will not incur the same 'blackout' effects from a nuclear detonation, but the optical systems will suffer from a phenomenon called redout. Redout occurs in an optical detector when ambient light scatters into the optical receiver, causing elevated background photon counts in the detector such that background noise overwhelms the signal. In this work, the duration of the redout effect is quantified from a nuclear disturbed environment on a ground-to-space quantum optical link. In addition, we comment on various techniques for reducing ambient and nuclear disturbed background counts in a quantum free-space optical link. For low-altitude nuclear detonations (i.e., under 50 km), the maximum interference time will be less than 1 min. Implementing a telescope, timing gate, and wavelength filter to the detector can reduce the background counts in the detector significantly. Aerosol levels and ground albedo are major contributors to background noise in a ground-to-satellite quantum channel, and ground station location should factor in both variables.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Effects of a nuclear disturbed environment on a quantum free space optical link
    Hooper, David A.
    Wilson, Brandon A.
    Miloshevsky, Alexander
    Williams, Brian P.
    Peters, Nicholas A.
    OPTICS EXPRESS, 2021, 29 (17) : 27254 - 27277
  • [2] Free-space optical communications link budget estimation
    Stotts, Larry B.
    Kolodzy, Paul
    Pike, Alan
    Graves, Buzz
    Dougherty, Dave
    Douglass, Jeff
    APPLIED OPTICS, 2010, 49 (28) : 5333 - 5343
  • [3] Free-space optical communications
    Chan, Vincent W. S.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) : 4750 - 4762
  • [4] FREE-SPACE OPTICAL COMMUNICATIONS USING QUANTUM CASCADE LASER
    Bielecki, Z.
    Kolosowski, W.
    Mikolajczyk, J.
    Nowakowski, M.
    Sedek, E.
    Wojtas, J.
    2008 MIKON CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2008, : 47 - +
  • [5] Free-space Optical Quantum BPSK Communications in Turbulent Channels
    Yuan, Renzhi
    Cheng, Julian
    2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,
  • [6] Demonstration of a high-efficiency free-space optical communications link
    Birnbaum, Kevin
    Farr, William
    Gin, Jonathan
    Moision, Bruce
    Quirk, Kevin
    Wright, Malcolm
    FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXI, 2009, 7199
  • [7] Optical communications - Multimode fibers can link free-space systems
    Noaker, PM
    LASER FOCUS WORLD, 1999, 35 (06): : 18 - +
  • [8] An Introduction to Free-space Optical Communications
    Henniger, Hennes
    Wilfert, Otakar
    RADIOENGINEERING, 2010, 19 (02) : 203 - 212
  • [9] Lasers for free-space optical communications
    Szweda, R.
    III-Vs Review, 2001, 14 (08) : 46 - 49
  • [10] Free-Space Optical Quantum Communications in Turbulent Channels With Receiver Diversity
    Yuan, Renzhi
    Cheng, Julian
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (09) : 5706 - 5717