Using Fourier transform infrared spectroscopy to determine mineral phases in sediments

被引:40
|
作者
Hahn, Annette [1 ]
Vogel, Hendrik [2 ,3 ]
Ando, Sergio [4 ]
Garzanti, Eduardo [4 ]
Kuhn, Gerhard [5 ]
Lantzsch, Hendrik [1 ]
Schueuerman, Jan [1 ]
Vogt, Christoph [6 ]
Zabel, Matthias [1 ]
机构
[1] Univ Bremen, MARUM Ctr Marine Environm Sci, D-SPECIAL I Bremen, Germany
[2] Univ Bern, Inst Geol Sci, Bern, Switzerland
[3] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland
[4] Univ Milano Bicocca, Dept Earth & Environm Sci, Milan, Italy
[5] Helmholtz Zentrum Polar & Meeresforsch AWI, Alfred Wegener Inst, Alten Hafen 26, D-27580 Bremerhaven, Germany
[6] Univ Bremen, Geosci, Cent Lab Crystallog & Appl Mat Sci ZEKAM, Klagenfurter Str 2-4, D-28359 Bremen, Germany
关键词
Method development; Quartz; K-feldspar; lllite; Plagioclase; Smectite; Calcite; Provenance study; QUANTITATIVE-ANALYSIS; PROVENANCE ANALYSIS; SURFACE SEDIMENTS; CHEMICAL-ANALYSIS; LAKE ELGYGYTGYN; SOUTHERN-OCEAN; 637; KA; MU-M; CLAY; REFLECTANCE;
D O I
10.1016/j.sedgeo.2018.03.010
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In paleoenvironmental studies, the mineralogical composition of sediments is an important indicator. In combination with other indicators, they contribute to the understanding of changes in sediment sourcing as well as in weathering and depositional processes. Fourier transform infrared spectroscopy (FTIRS) spectra contain information on mineralogical composition because each mineral has a unique absorption pattern in the mid-IR range. Although easily obtained, FTIR spectra are often too complex to infer mineral concentrations directly. In this study, we use a calibration set of ca. 200 sediment samples conventionally measured using X-ray diffraction (XRD) in order to develop multivariate, partial least squares (PLS) regression models relating mineral contents to sediment spectra. Good correlations were obtained for the most common minerals (e.g. quartz, K-feldspar, illite, plagio-clase, smectite, calcite). Correlation coefficients ranged from 0.85 to 0.92, coefficients for the validation varied from 0.64 to 0.80, the number of latent variables (PLS regression components) in the models ranged between 3 and 7 and the range of variation of the RMSEcv gradient was from 15.28 to 5.7. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 50 条
  • [1] Heavy Mineral Identification and Quantification Using Fourier Transform Infrared Spectroscopy
    Azzam, Fares
    Blaise, Thomas
    Barbarand, Jocelyn
    Cassagne, Helene
    Nouet, Julius
    APPLIED SPECTROSCOPY, 2025,
  • [2] Quantification of TOC and TN in reservoir sediments using Fourier transform infrared spectroscopy
    Lin Mei
    Yihong Yue
    Yong Qin
    Xueping Chen
    Fushun Wang
    Soil Ecology Letters, 2022, 4 : 399 - 408
  • [3] Quantification of TOC and TN in reservoir sediments using Fourier transform infrared spectroscopy
    Mei, Lin
    Yue, Yihong
    Qin, Yong
    Chen, Xueping
    Wang, Fushun
    SOIL ECOLOGY LETTERS, 2022, 4 (04) : 399 - 408
  • [4] Studying of the bacterial growth phases using fourier transform infrared spectroscopy and multivariate analysis
    Al-Qadiri, Hamzah M.
    Al-Alami, Nivin I.
    Lin, Mengshi
    Al-Holy, Murad
    Cavinato, Anna G.
    Rasco, Barbara A.
    JOURNAL OF RAPID METHODS AND AUTOMATION IN MICROBIOLOGY, 2008, 16 (01): : 73 - 89
  • [5] Comparing silicon mineral species of different crystallinity using Fourier transform infrared spectroscopy
    Ellerbrock, Ruth H.
    Stein, Mathias
    Schaller, Joerg
    FRONTIERS IN ENVIRONMENTAL CHEMISTRY, 2024, 5
  • [6] The use of the Fourier Transform Infrared spectroscopy to determine adulterants in raw milk
    Cassoli, Laerte Dagher
    Sartori, Beatriz
    Machado, Paulo Fernando
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2011, 40 (11): : 2591 - 2596
  • [7] Fingerprinting of Mineral Medicine Natrii Sulfas by Fourier Transform Infrared Spectroscopy
    Wu Xiang-qin
    Sun Fei
    Yan Wei
    Chen Lei
    Wang Shu-mei
    Liang Sheng-wang
    SPECTROSCOPY, 2021, 36 (06) : 38 - 43
  • [8] INFRARED FOURIER TRANSFORM SPECTROSCOPY
    LOW, MJD
    ANALYTICAL CHEMISTRY, 1969, 41 (06) : A97 - &
  • [9] Fourier transform infrared spectroscopy and near infrared spectroscopy
    Wetterau, J
    NACHRICHTEN AUS CHEMIE TECHNIK UND LABORATORIUM, 1998, 46 : S59 - +
  • [10] Fourier transform infrared spectroscopy as a new tool to determine rosmarinic acid in situ
    Stehfest, K
    Boese, M
    Kerns, G
    Piry, A
    Wilhelm, C
    JOURNAL OF PLANT PHYSIOLOGY, 2004, 161 (02) : 151 - 156