Harmonic cross-correlation decomposition for multivariate time series

被引:1
作者
Zerenner, Tanja [1 ]
Goodfellow, Marc
Ashwin, Peter
机构
[1] Univ Exeter, EPSRC Ctr Predict Modeling Healthcare, Exeter EX4 4PY, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
SINGULAR-SPECTRUM ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; SLEEP EEG; TEMPERATURE; DYNAMICS; SEIZURES; GENUINE; WEATHER;
D O I
10.1103/PhysRevE.103.062213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce harmonic cross-correlation decomposition (HCD) as a tool to detect and visualize features in the frequency structure of multivariate time series. HCD decomposes multivariate time series into spatiotemporal harmonic modes with the leading modes representing dominant oscillatory patterns in the data. HCD is closely related to data-adaptive harmonic decomposition (DAHD) [Chekroun and Kondrashov, Chaos 27, 093110 (2017)] in that it performs an eigendecomposition of a grand matrix containing lagged cross-correlations. As for DAHD, each HCD mode is uniquely associated with a Fourier frequency, which allows for the definition of multidimensional power and phase spectra. Unlike in DAHD, however, HCD does not exhibit a systematic dependency on the ordering of the channels within the grand matrix. Further, HCD phase spectra can be related to the phase relations in the data in an intuitive way. We compare HCD with DAHD and multivariate singular spectrum analysis, a third related correlation-based decomposition, and we give illustrative applications to a simple traveling wave, as well as to simulations of three coupled Stuart-Landau oscillators and to human EEG recordings.
引用
收藏
页数:21
相关论文
共 71 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Application of singular spectrum analysis to the smoothing of raw kinematic signals [J].
Alonso, FJ ;
Del Castillo, JM ;
Pintado, P .
JOURNAL OF BIOMECHANICS, 2005, 38 (05) :1085-1092
[3]  
[Anonymous], 2013, SINGULAR SPECTRUM AN, DOI DOI 10.1007/978-3-642-34913-3
[4]   Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition [J].
Artoni, Fiorenzo ;
Delorme, Arnaud ;
Makeig, Scott .
NEUROIMAGE, 2018, 175 :176-187
[5]   Singular Spectrum Analysis of Sleep EEG in Insomnia [J].
Aydin, Serap ;
Saraoglu, Hamdi Melih ;
Kara, Sadik .
JOURNAL OF MEDICAL SYSTEMS, 2011, 35 (04) :457-461
[6]   3 COUPLED OSCILLATORS - MODE-LOCKING, GLOBAL BIFURCATIONS AND TOROIDAL CHAOS [J].
BAESENS, C ;
GUCKENHEIMER, J ;
KIM, S ;
MACKAY, RS .
PHYSICA D, 1991, 49 (03) :387-475
[7]   What does the broken brain say to the neuroscientist? Oscillations and connectivity in schizophrenia, Alzheimer's disease, and bipolar disorder [J].
Basar, E. ;
Schmiedt-Fehr, C. ;
Mathes, B. ;
Femir, B. ;
Emek-Savas, D. D. ;
Tulay, E. ;
Tan, D. ;
Duzgun, A. ;
Guntekin, B. ;
Ozerdem, A. ;
Yener, G. ;
Basar-Eroglu, C. .
INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2016, 103 :135-148
[8]   Impact of El Nino Southern Oscillation on European climate [J].
Broennimann, S. .
REVIEWS OF GEOPHYSICS, 2007, 45 (02)
[9]   EXTRACTING QUALITATIVE DYNAMICS FROM EXPERIMENTAL-DATA [J].
BROOMHEAD, DS ;
KING, GP .
PHYSICA D, 1986, 20 (2-3) :217-236
[10]  
Buzsaki Gyorgy, 2012, Dialogues Clin Neurosci, V14, P345