Picard groups of higher real K-theory spectra at height p-1

被引:11
作者
Heard, Drew [1 ]
Mathew, Akhil [2 ]
Stojanoska, Vesna [3 ]
机构
[1] Univ Hamburg, Dept Math, D-20146 Hamburg, Germany
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Picard groups; higher real K-theories; Galois descent; power operations; HOMOTOPY-GROUPS; SUBGROUPS; RESOLUTION; ALGEBRAS; MODULES; SPACE;
D O I
10.1112/S0010437X17007242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the descent spectral sequence for a Galois extension of ring spectra, we compute the Picard group of the higher real K-theory spectra of Hopkins and Miller at height n = p - 1, for p an odd prime. More generally, we determine the Picard groups of the homotopy fixed points spectra E-n(hC), where E-n is Lubin Tate E-theory at the prime p and height n = p - 1, and G is any finite subgroup of the extended Morava stabilizer group. We find that these Picard groups are always cyclic, generated by the suspension.
引用
收藏
页码:1820 / 1854
页数:35
相关论文
共 44 条