RESTRICTED SUM FORMULA FOR FINITE AND SYMMETRIC MULTIPLE ZETA VALUES

被引:2
作者
Murahara, Hideki [1 ]
Saito, Shingo [2 ]
机构
[1] Nakamura Gakuen Univ, Grad Sch, Jonan Ku, Fukuoka, Fukuoka, Japan
[2] Kyushu Univ, Fac Arts & Sci, Nishi Ku, Fukuoka, Fukuoka, Japan
基金
日本学术振兴会;
关键词
finite multiple zeta values; symmetric multiple zeta values; symmetrised multiple zeta values; finite real multiple zeta values; sum formula; restricted sum formula;
D O I
10.2140/pjm.2019.303.325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sum formula for finite and symmetric multiple zeta values, established by Wakabayashi and the authors, implies that if the weight and depth are fixed and the specified component is required to be more than one, then the values sum up to a rational multiple of the analogue of the Riemann zeta value. We prove that the result remains true if we further demand that the component should be more than two or that another component should also be more than one.
引用
收藏
页码:325 / 335
页数:11
相关论文
共 50 条
  • [41] A q-analogue of symmetric multiple zeta value
    Yoshihiro Takeyama
    The Ramanujan Journal, 2024, 63 : 209 - 252
  • [42] A q-analogue of symmetric multiple zeta value
    Takeyama, Yoshihiro
    RAMANUJAN JOURNAL, 2023, 63 (1) : 209 - 252
  • [43] GENERATING FUNCTIONS FOR SUMS OF POLYNOMIAL MULTIPLE ZETA VALUES
    Hirose, Minoru
    Murahara, Hideki
    Saito, Shingo
    TOHOKU MATHEMATICAL JOURNAL, 2022, 74 (03) : 399 - 428
  • [44] A new proof of the duality of multiple zeta values and its generalizations
    Seki, Shin-ichiro
    Yamamoto, Shuji
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (06) : 1261 - 1265
  • [45] Multiple zeta star values on 3–2–1 indices
    Kh. Hessami Pilehrood
    T. Hessami Pilehrood
    The Ramanujan Journal, 2023, 60 : 259 - 285
  • [46] Quasi-derivation relations for multiple zeta values revisited
    Masanobu Kaneko
    Hideki Murahara
    Takuya Murakami
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2020, 90 : 151 - 160
  • [47] WEIGHTED SUM FORMULA FOR MULTIPLE HARMONIC SUMS MODULO PRIMES
    Hirose, Minoru
    Murahara, Hideki
    Saito, Shingo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3357 - 3366
  • [48] Quasi-derivation relations for multiple zeta values revisited
    Kaneko, Masanobu
    Murahara, Hideki
    Murakami, Takuya
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2020, 90 (02): : 151 - 160
  • [49] The decomposition theorem of products of multiple zeta values of height one
    Eie, Minking
    Liaw, Wen-Chin
    Ong, Yao Lin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (01) : 15 - 25
  • [50] Multiple zeta star values on 3-2-1 indices
    Pilehrood, Kh Hessami
    Pilehrood, T. Hessami
    RAMANUJAN JOURNAL, 2023, 60 (01) : 259 - 285