finite multiple zeta values;
symmetric multiple zeta values;
symmetrised multiple zeta values;
finite real multiple zeta values;
sum formula;
restricted sum formula;
D O I:
10.2140/pjm.2019.303.325
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The sum formula for finite and symmetric multiple zeta values, established by Wakabayashi and the authors, implies that if the weight and depth are fixed and the specified component is required to be more than one, then the values sum up to a rational multiple of the analogue of the Riemann zeta value. We prove that the result remains true if we further demand that the component should be more than two or that another component should also be more than one.
机构:
Nakamura Gakuen Univ, Grad Sch, Jonan Ku, 5-7-1 Befu, Fukuoka 8140198, JapanNakamura Gakuen Univ, Grad Sch, Jonan Ku, 5-7-1 Befu, Fukuoka 8140198, Japan
机构:
Rikkyo Univ, Dept Math, Toshima Ku, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, JapanRikkyo Univ, Dept Math, Toshima Ku, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, Japan
机构:
Nagoya Univ, Inst Adv Res, Furo Cho,Chikusa Ku, Nagoya 4648602, JapanNagoya Univ, Inst Adv Res, Furo Cho,Chikusa Ku, Nagoya 4648602, Japan
Hirose, Minoru
Murahara, Hideki
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kitakyushu, 4-2-1 Kitagata,Kokuraminami Ku, Kitakyushu, Fukuoka 8028577, JapanNagoya Univ, Inst Adv Res, Furo Cho,Chikusa Ku, Nagoya 4648602, Japan
Murahara, Hideki
Onozuka, Tomokazu
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Univ, Inst Math Ind, 744 Motooka,Nishi Ku, Fukuoka 8190395, JapanNagoya Univ, Inst Adv Res, Furo Cho,Chikusa Ku, Nagoya 4648602, Japan