Soil Freeze-Thaw and Water Transport Characteristics Under Different Vegetation Types in Seasonal Freeze-Thaw Areas of the Loess Plateau

被引:18
|
作者
Bo, Lanfeng [1 ,2 ]
Li, Zhanbin [1 ,2 ]
Li, Peng [3 ]
Xu, Guoche [3 ]
Xiao, Lie [3 ]
Ma, Bo [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling, Shaanxi, Peoples R China
[2] MWR, Yangling, Shaanxi, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
关键词
soil temperature; soil water content; soil hydrothermal transport; natural freeze-thaw cycle; soil heat transfer; LAND-USE; MOISTURE; VARIABILITY; DYNAMICS; REGION; PRECIPITATION; DEGRADATION; ECOSYSTEMS; PHOSPHORUS; MIGRATION;
D O I
10.3389/feart.2021.704901
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In the arid and semi-arid regions of the Loess Plateau, seasonal freezing and thawing influence soil water movement, and water movement directly influences vegetation growth. However, currently, research with regard to freezing and thawing processes under various vegetation types and the mechanism of soil water movement is lacking. Therefore, the present study explored soil water migration characteristics of two typical vegetation types [arbor land (AL) and shrub land (SL)] on the Loess Plateau during seasonal freezing and thawing processes using bare land (BL) as a control. We used field measured data for hourly soil temperature (ST) and soil water content (SWC) at a depth of 100 cm below the soil surface from November 2017 to March 2018. Freezing and thawing process was divided into three stages based on ST change (initial freezing period, stable freezing period, and thawing period). Compared with previous studies in this area, ST is lower than expected, and SWC migration characteristics are also different. The results revealed that: 1) the maximum freezing depth of AL and SL was 60 cm, which was 30 cm less than that of BL. The freezing date of each soil layer in BL was the earliest and average ST value was the lowest. BL had the highest degree of freezing. The freezing of all soil layers in AL occurred at a later date than that of SL. ST and the minimum soil freezing temperatures were higher than those of SL, and the capacity of AL to resist freezing was higher; 2) the SWCs in AL and BL at depths of 0-10 cm and 10-30 cm decreased, whereas SWCs of AL and BL at a depth of 60 cm increased by 152 and 146%, respectively. The SWCs of SL at soil depths of 0-10 cm, 10-30 cm, and 30-60 cm increased by 46.3, 78.4 and 205%, respectively. The amount and distribution of soil moisture in SL were optimum when compared to those of AL and BL. The results of the present study could provide a scientific basis for vegetation restoration in arid and semi-arid areas of the Loess Plateau.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Seasonal freeze-thaw characteristics of soil carbon pools under different vegetation restoration types on the Longzhong Loess Plateau
    Liu, Shuainan
    Wu, Jiangqi
    Li, Guang
    Yang, Chuanjie
    Yuan, Jianyu
    Xie, Mingjun
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2022, 10
  • [2] Effects of irrigation on soil temperature and soil freeze-thaw characteristics during seasonal freeze-thaw period
    Zheng, X. (zxq6818@sina.com), 1600, Chinese Society of Agricultural Machinery (44):
  • [3] The Critical Depth of Freeze-Thaw Soil under Different Types of Snow Cover
    Fu, Qiang
    Hou, Renjie
    Li, Tianxiao
    Yan, Peiru
    Ma, Ziao
    WATER, 2017, 9 (06):
  • [4] Properties of modified loess under freeze-thaw cycles
    Lü, Qingfeng
    Li, Xiaoyuan
    Zhao, Yanxu
    Wang, Shengxin
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2014, 45 (03): : 819 - 825
  • [5] The Impact of Freeze-Thaw History on Soil Carbon Response to Experimental Freeze-Thaw Cycles
    Rooney, Erin C.
    Bailey, Vanessa L.
    Patel, Kaizad F.
    Possinger, Angela R.
    Gallo, Adrian C.
    Bergmann, Maya
    SanClements, Michael
    Lybrand, Rebecca A.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2022, 127 (05)
  • [6] Correlation between Water Freeze-Thaw Resistance and Salt Freeze-Thaw Resistance of Concrete
    Xu G.
    Gong C.
    Liu J.
    Gao D.
    Zeng Z.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2020, 23 (03): : 552 - 556and562
  • [7] Damage Characteristics of Limestone under Freeze-Thaw Cycle for Tunnels in Seasonal Frozen Areas
    Yu, Qingyang
    Lei, Peng
    Dai, Zhenxue
    Soltanian, Mohamad Reza
    Yin, Shangxian
    Liu, Wei
    Xiong, Ziwei
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (01) : 469 - 477
  • [8] Comparative study of seasonal freeze-thaw on soil water transport in farmland and its shelterbelt
    Ding, Bingbing
    Zhang, Yonge
    Yu, Xinxiao
    Jia, Guodong
    Wang, Yusong
    Zheng, Pengfei
    Li, Zedong
    CATENA, 2023, 225
  • [9] The impact of freeze-thaw circle on loess collapsibility
    Key Laboratory of Disaster Prevention, Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, China
    不详
    不详
    Electron. J. Geotech. Eng., 4 (1207-1224):
  • [10] The effects of freeze-thaw process on soil water migration in dam and slope farmland on the Loess Plateau, China
    Wang, Tian
    Li, Peng
    Li, Zhanbin
    Hou, Jingming
    Xiao, Lie
    Ren, Zongping
    Xu, Guoce
    Yu, Kunxia
    Su, Yuanyi
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 666 : 721 - 730