Using the Particle Swarm Optimization Algorithm for Robotic Search Applications

被引:50
作者
Hereford, James M. [1 ]
Siebold, Michael [1 ]
Nichols, Shannon [1 ]
机构
[1] Murray State Univ, Dept Engn & Phys, Murray, KY 42071 USA
来源
2007 IEEE SWARM INTELLIGENCE SYMPOSIUM | 2007年
关键词
D O I
10.1109/SIS.2007.368026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes the experimental results of using the Particle Swarm Optimization (PSO) algorithm to control a suite of robots. In our approach, each hot is one particle in the PSO; each particle/bot makes measurements, updates its own position and velocity, updates its own personal best measurement (pbest) and personal best location (if necessary), and broadcasts to the other bots if it has found a global best measurement/position. We built three bots and tested the algorithm by letting the bots find the brightest spot of light in the room. The tests show that using the PSO to control a swarm can successfully find the target, even in the presence of obstacles.
引用
收藏
页码:53 / +
页数:2
相关论文
共 17 条
[1]  
BERGBREITER S, 2003, IROS 2003 LAS VEG NV, P27
[2]  
Chang JF, 2005, J INF SCI ENG, V21, P809
[3]  
CULLER DE, 2004, SCI AM JUN, P84
[4]   Optimal PSO for collective robotic search applications [J].
Doctor, S ;
Venayagamoorthy, GK ;
Gudise, VG .
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, :1390-1395
[5]  
Eberhart R., 1995, MHS 95 P 6 INT S MIC, DOI DOI 10.1109/MHS.1995.494215
[6]   Special issue on particle swarm optimization [J].
Eberhart, RC ;
Shi, YH .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) :201-203
[7]  
EBERHART RC, 2001, P C EV COMP KOR
[8]  
HAYES A, 2002, IEEE SENSORS JUN, P260
[9]  
Hayes AT, 2000, DISTRIBUTED AUTONOMOUS ROBOTIC SYSTEMS, P261
[10]  
HEREFORD J, 2006, 2006 C EV COMP VANC, P6143