Conformable fractional Dirac system on time scales

被引:22
作者
Gulsen, Tuba [1 ]
Yilmaz, Emrah [1 ]
Goktas, Sertac [2 ]
机构
[1] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[2] Mersin Univ, Fac Sci & Letters, Dept Math, TR-33343 Mersin, Turkey
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2017年
关键词
time scale; conformable fractional derivative; Dirac system; BOUNDARY-VALUE-PROBLEMS; SPECTRAL PARAMETER; INVERSE PROBLEMS; EQUATIONS; DEFINITION; EXISTENCE; CALCULUS;
D O I
10.1186/s13660-017-1434-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the conformable fractional (CF) Dirac system with separated boundary conditions on an arbitrary time scale T. Then we extend some basic spectral properties of the classical Dirac system to the CF case. Eventually, some asymptotic estimates for the eigenfunction of the CF Dirac eigenvalue problem are obtained on T. So, we provide a constructive procedure for the solution of this problem. These results are important steps to consolidate the link between fractional calculus and time scale calculus in spectral theory.
引用
收藏
页数:10
相关论文
共 45 条
  • [1] On conformable fractional calculus
    Abdeljawad, Thabet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 57 - 66
  • [2] Sturm-Liouville eigenvalue problems on time scales
    Agarwal, RP
    Bohner, M
    Wong, PJY
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) : 153 - 166
  • [3] Direct and inverse problems for the Dirac operator with a spectral parameter linearly contained in a boundary condition
    Amirov, R. Kh.
    Keskin, B.
    Ozkan, A. S.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (09) : 1365 - 1379
  • [4] [Anonymous], 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
  • [5] [Anonymous], 1991, MATH ITS APPL SOVIET
  • [6] [Anonymous], 2000, Applications of Fractional Calculus in Physics
  • [7] [Anonymous], 1988, Ein Ma kettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten
  • [8] [Anonymous], 1989, ELLIS HORWOOD SERIES
  • [9] [Anonymous], 1974, FRACTIONAL CALCULUS
  • [10] Atici FM, 2009, P AM MATH SOC, V137, P981