The nonorientable genus of joins of complete graphs with large edgeless graphs

被引:17
作者
Ellingham, M. N. [1 ]
Stephens, D. Christopher
机构
[1] Vanderbilt Univ, Dept Math, Stevenson Ctr 1326, Nashville, TN 37240 USA
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
基金
美国国家科学基金会;
关键词
graph embedding; Hamilton cycle face; nonorientable genus;
D O I
10.1016/j.jctb.2007.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for n = 4 and n >= 6, K, has a nonorientable embedding in which all the facial walks are hamilton cycles. Moreover, when n is odd there is such an embedding that is 2-face-colorable. Using these results we consider the join of an edgeless graph with a complete graph, (K) over bar (m) + K-n = Km+n - K-m, and show that for n >=, 3 and m >= n - I its nonorientable genus is [(m, - 2)(n - 2)/2] except when (in, n) = (4, 5). We then extend these results to find the nonorientable genus of all graphs K, + G where m V (G) I - 1. We provide a result that applies in some cases with smaller m when G is disconnected. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:827 / 845
页数:19
相关论文
共 26 条
[1]  
[Anonymous], 1974, MAP COLOR THEOREM, DOI DOI 10.1007/978-3-642-65759-7
[2]  
Bonnington C. Paul, 1995, The Foundations of Topological Graph Theory
[4]  
Craft D.L, 1991, THESIS W MICHIGAN U
[5]   On the genus of joins and compositions of graphs [J].
Craft, DL .
DISCRETE MATHEMATICS, 1998, 178 (1-3) :25-50
[6]   The nonorientable genus of complete tripartite graphs [J].
Ellingham, M. N. ;
Stephens, Chris ;
Zha, Xiaoya .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) :529-559
[7]   Counterexamples to the nonorientable genus conjecture for complete tripartite graphs [J].
Ellingham, MN ;
Stephens, C ;
Zha, XY .
EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (3-4) :387-399
[8]  
ELLINGHAM MN, UNPUB ORIENTABLE GEN
[9]  
Gross J.L., 1987, Topological graph theory
[10]  
Guy R. K., 1973, Journal of Combinatorial Theory, Series B, V15, P1, DOI 10.1016/0095-8956(73)90026-9