Multi-symplectic methods for the Ito-type coupled KdV equation

被引:19
|
作者
Chen, Yaming [1 ]
Song, Songhe [1 ]
Zhu, Huajun [2 ]
机构
[1] Natl Univ Def Technol, Sch Sci, Dept Math & Syst Sci, Changsha 410073, Hunan, Peoples R China
[2] China Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Peoples R China
关键词
Ito-type coupled KdV equation; Multi-symplectic; Fourier pseudospectral method; Wavelet collocation method; RUNGE-KUTTA; INTEGRATORS; SCHEME;
D O I
10.1016/j.amc.2011.11.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we find that the Ito-type coupled KdV equation can be written as a multisymplectic Hamiltonian partial differential equation (PDE). Then, multi-symplectic Fourier pseudospectral method and multi-symlpectic wavelet collocation method are constructed for this equation. In the numerical experiments, we show the effectiveness of the proposed methods. Some comparisons between the proposed methods are also made with respect to global conservation properties. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:5552 / 5561
页数:10
相关论文
共 50 条
  • [31] Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation
    Wei-peng Hu
    Zi-chen Deng
    Song-mei Han
    Wei Fa
    Applied Mathematics and Mechanics, 2009, 30 : 1027 - 1034
  • [32] Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation
    胡伟鹏
    邓子辰
    韩松梅
    范玮
    AppliedMathematicsandMechanics(EnglishEdition), 2009, 30 (08) : 1027 - 1034
  • [33] Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation
    Hu, Wei-peng
    Deng, Zi-chen
    Han, Song-mei
    Fan, Wei
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (08) : 1027 - 1034
  • [34] Multi-symplectic Runge-Kutta-type methods for Hamiltonian wave equations
    Liu, HY
    Zhang, K
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (02) : 252 - 271
  • [35] Stochastic Multi-Symplectic Integrator for Stochastic Nonlinear Schrodinger Equation
    Jiang, Shanshan
    Wang, Lijin
    Hong, Jialin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (02) : 393 - 411
  • [36] A new multi-symplectic Euler box scheme for the BBM equation
    Li, Haochen
    Sun, Jianqiang
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (7-8) : 1489 - 1501
  • [37] Explicit multi-symplectic method for the Zakharov-Kuznetsov equation
    钱旭
    宋松和
    高二
    李伟斌
    Chinese Physics B, 2012, 21 (07) : 47 - 52
  • [38] Multi-symplectic preserving integrator for the Schrodinger equation with wave operator
    Wang, Lan
    Kong, Linghua
    Zhang, Liying
    Zhou, Wenying
    Zheng, Xiaohong
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (22) : 6817 - 6829
  • [39] Meshless Symplectic and Multi-symplectic Local RBF Collocation Methods for Hamiltonian PDEs
    Shengliang Zhang
    Journal of Scientific Computing, 2021, 88
  • [40] A New Multi-Symplectic Integration Method for the Nonlinear Schrodinger Equation
    Lv Zhong-Quan
    Wang Yu-Shun
    Song Yong-Zhong
    CHINESE PHYSICS LETTERS, 2013, 30 (03)