Gradient blow-up solution with small initial datum for a Hamilton-Jacobi equation with degenerate diffusion

被引:0
|
作者
Wang, Zhiyong [1 ,2 ]
Yin, Jingxue [3 ]
机构
[1] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
[2] Fujian Normal Univ, Fujian Key Lab Math Anal & Applicat, Fuzhou 350117, Fujian, Peoples R China
[3] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Gradient blow-up; Degenerate Hamilton-Jacobi equation; CRITICAL EXPONENTS; GLOBAL-SOLUTIONS; BOUNDEDNESS; BOUNDARY;
D O I
10.1016/j.jmaa.2018.12.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the gradient blow-up phenomena for a Hamilton-Jacobi equation with degenerate diffusion u(t) = (vertical bar u(x)vertical bar(p-2)u(x))(x) + vertical bar u(x)vertical bar(q) in an interval for q > p >= 2. In the main theorem, we construct a gradient blow-up solution with a small L-1 initial datum. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1914 / 1926
页数:13
相关论文
共 50 条
  • [31] Blow-up theorems of Fujita type for a semilinear parabolic equation with a gradient term
    Na, Yang
    Zhou, Mingjun
    Zhou, Xu
    Gai, Guanming
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [32] Blow-Up Analysis for a Reaction-Diffusion Model with Nonlocal and Gradient Terms
    Shen, Xuhui
    Lan, Lun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [33] Separate variable blow-up patterns for a reaction-diffusion equation with critical weighted reaction
    Gabriel Iagar, Razvan
    Sanchez, Ariel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 217
  • [34] Energy decay and blow-up of solution for a Kirchhoff equation with dynamic boundary condition
    Zhang, Hongwei
    Hou, Changshun
    Hu, Qingying
    BOUNDARY VALUE PROBLEMS, 2013,
  • [35] GRADIENT BLOW-UP FOR A FOURTH-ORDER QUASILINEAR BOUSSINESQ-TYPE EQUATION
    Alvarez-Caudevilla, Pablo
    Evans, Jonathan D.
    Galaktionov, Victor A.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 3913 - 3938
  • [36] Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy
    Liu, Yang
    Da, Chaojiu
    Lv, Pengju
    ANNALES POLONICI MATHEMATICI, 2016, 117 (01) : 89 - 99
  • [37] Extensibility criterion ruling out gradient blow-up in a quasilinear degenerate chemotaxis system with flux limitation
    Mizukami, Masaaki
    Ono, Tatsuhiko
    Yokota, Tomomi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5115 - 5164
  • [38] THE BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS OF CAUCHY PROBLEMS FOR A TIME FRACTIONAL DIFFUSION EQUATION
    Zhang, Quan-Guo
    Sun, Hong-Rui
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (01) : 69 - 92
  • [39] BLOW-UP PATTERNS FOR A REACTION-DIFFUSION EQUATION WITH WEIGHTED REACTION IN GENERAL DIMENSION
    Iagar, Razvan Gabriel
    Latorre, Marta
    Sanchez, Ariel
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2024, 29 (7-8) : 515 - 574
  • [40] Critical exponents and blow-up rate for a nonlinear diffusion equation with logarithmic boundary flux
    Li, Zhongping
    Mu, Chunlai
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) : 933 - 939