Applied axial magnetic field effects on laboratory plasma jets: Density hollowing, field compression, and azimuthal rotation

被引:27
作者
Byvank, T. [1 ]
Banasek, J. T. [1 ]
Potter, W. M. [1 ]
Greenly, J. B. [1 ]
Seyler, C. E. [1 ]
Kusse, B. R. [1 ]
机构
[1] Cornell Univ, Lab Plasma Studies, 438 Rhodes Hall,136 Hoy Rd, Ithaca, NY 14853 USA
关键词
ASTROPHYSICS; LASERS;
D O I
10.1063/1.5003777
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We experimentally measure the effects of an applied axial magnetic field (B-z) on laboratory plasma jets and compare the experimental results with numerical simulations using an extended magnetohydrodynamics code. A 1 MA peak current, 100 ns rise time pulse power machine is used to generate the plasma jet. On application of the axial field, we observe on-axis density hollowing and a conical formation of the jet using interferometry, compression of the applied B-z using magnetic B-dot probes, and azimuthal rotation of the jet using Thomson scattering. Experimentally, we find densities less than or similar to 5 x 10(17) cm(-3) on-axis relative to jet densities of greater than or similar to 3 x 10(18) cm(-3). For aluminum jets, 6.5 +/- 0.5 mm above the foil, we find on-axis compression of the applied 1.0 +/- 0.1 T B-z to a total 2.4 +/- 0.3 T, while simulations predict a peak compression to a total 3.4 T at the same location. On the aluminum jet boundary, we find ion azimuthal rotation velocities of 15-20 km/s, while simulations predict 14 km/s at the density peak. We discuss possible sources of discrepancy between the experiments and simulations, including surface plasma on B-dot probes, optical fiber spatial resolution, simulation density floors, and 2D vs. 3D simulation effects. This quantitative comparison between experiments and numerical simulations helps elucidate the underlying physics that determines the plasma dynamics of magnetized plasma jets. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 31 条
[1]   Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field [J].
Albertazzi, B. ;
Ciardi, A. ;
Nakatsutsumi, M. ;
Vinci, T. ;
Beard, J. ;
Bonito, R. ;
Billette, J. ;
Borghesi, M. ;
Burkley, Z. ;
Chen, S. N. ;
Cowan, T. E. ;
Herrmannsdoerfer, T. ;
Higginson, D. P. ;
Kroll, F. ;
Pikuz, S. A. ;
Naughton, K. ;
Romagnani, L. ;
Riconda, C. ;
Revet, G. ;
Riquier, R. ;
Schlenvoigt, H. -P. ;
Skobelev, I. Yu. ;
Faenov, A. Ya. ;
Soloviev, A. ;
Huarte-Espinosa, M. ;
Frank, A. ;
Portugall, O. ;
Pepin, H. ;
Fuchs, J. .
SCIENCE, 2014, 346 (6207) :325-328
[2]   Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields [J].
Albertazzi, B. ;
Beard, J. ;
Ciardi, A. ;
Vinci, T. ;
Albrecht, J. ;
Billette, J. ;
Burris-Mog, T. ;
Chen, S. N. ;
Da Silva, D. ;
Dittrich, S. ;
Herrmannsdoerfer, T. ;
Hirardin, B. ;
Kroll, F. ;
Nakatsutsumi, M. ;
Nitsche, S. ;
Riconda, C. ;
Romagnagni, L. ;
Schlenvoigt, H. -P. ;
Simond, S. ;
Veuillot, E. ;
Cowan, T. E. ;
Portugall, O. ;
Pepin, H. ;
Fuchs, J. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (04)
[3]   Supersonic radiatively cooled rotating flows and jets in the laboratory [J].
Ampleford, D. J. ;
Lebedev, S. V. ;
Ciardi, A. ;
Bland, S. N. ;
Bott, S. C. ;
Hall, G. N. ;
Naz, N. ;
Jennings, C. A. ;
Sherlock, M. ;
Chittenden, J. P. ;
Palmer, J. B. A. ;
Frank, A. ;
Blackman, E. .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[4]   Measuring 10-20 T magnetic fields in single wire explosions using Zeeman splitting [J].
Banasek, J. T. ;
Engelbrecht, J. T. ;
Pikuz, S. A. ;
Shelkovenko, T. A. ;
Hammer, D. A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (10)
[5]   Measuring 20-100 T B-fields using Zeeman splitting of sodium emission lines on a 500 kA pulsed power machine [J].
Banasek, J. T. ;
Engelbrecht, J. T. ;
Pikuz, S. A. ;
Shelkovenko, T. A. ;
Hammer, D. A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)
[6]   From lasers to the universe: Scaling laws in laboratory astrophysics [J].
Bouquet, S. ;
Falize, E. ;
Michaut, C. ;
Gregory, C. D. ;
Loupias, B. ;
Vinci, T. ;
Koenig, M. .
HIGH ENERGY DENSITY PHYSICS, 2010, 6 (04) :368-380
[7]   Extended Magnetohydrodynamic Plasma Jets With External Magnetic Fields [J].
Byvank, T. ;
Chang, J. ;
Potter, W. M. ;
Seyler, C. E. ;
Kusse, B. R. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2016, 44 (04) :638-642
[8]  
Chung H. K., 2005, High Energy Density Phys, V1, P3, DOI [10.1016/j.hedp.2005.07.001, DOI 10.1016/J.HEDP.2005.07.001]
[9]   Determination of magnetic fields based on the Zeeman effect in regimes inaccessible by Zeeman-splitting spectroscopy [J].
Doron, R. ;
Mikitchuk, D. ;
Stollberg, C. ;
Rosenzweig, G. ;
Stambulchik, E. ;
Kroupp, E. ;
Maron, Y. ;
Hammer, D. A. .
HIGH ENERGY DENSITY PHYSICS, 2014, 10 :56-60
[10]   LASER LIGHT SCATTERING IN LABORATORY PLASMAS [J].
EVANS, DE ;
KATZENSTEIN, J .
REPORTS ON PROGRESS IN PHYSICS, 1969, 32 (02) :207-+