Global existence and finite time blow-up of solutions of a Gierer-Meinhardt system

被引:13
作者
Li, Fang [1 ]
Peng, Rui [2 ]
Song, Xianfa [3 ]
机构
[1] East China Normal Univ, Ctr Partial Differential Equat, 500 Dong Chuan Rd, Shanghai 200241, Peoples R China
[2] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[3] Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China
关键词
Gierer-Meinhault system; Global existence; Finite time blow-up; STATIONARY SOLUTIONS; RING SOLUTIONS; SPIKES; BIFURCATION; STABILITY;
D O I
10.1016/j.jde.2016.09.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with the Gierer-Meinhardt system with zero Neumann boundary condition: {u(t) = d(1)Delta u - a(1)u + u(p)/v(q) + delta(1)(x), x is an element of Omega, t > 0, v(t) = d(2)Delta v - a(2)v + u(r)/v(s) + delta(2)(x), x is an element of Omega, t > 0, u(x, 0) = u(0)(x), v(x, 0) = v(0)(x), x is an element of Omega, where p > 1, s > -1, q, r, d(1), d(2), a(1), a(2) are positive constants, delta(1), delta(2), u(0), v(0) are nonnegative smooth functions, Omega subset of R-d (d >= 1) is a bounded smooth domain. We obtain new sufficient conditions for global existence and finite time blow-up of solutions, especially in the critical exponent cases: p - 1 = r and qr = (p - 1)(s +1). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:559 / 589
页数:31
相关论文
共 51 条
[1]  
[Anonymous], 1987, JAPAN J APPL MATH
[2]  
[Anonymous], 1995, JPN J IND APPL MATH
[3]  
[Anonymous], 1998, Not. Am. Math. Soc.
[4]  
[Anonymous], CBMS NSF REGIONAL C
[5]   Bifurcation analysis of the Gierer-Meinhardt system with a saturation in the activator production [J].
Chen, Shanshan ;
Shi, Junping ;
Wei, Junjie .
APPLICABLE ANALYSIS, 2014, 93 (06) :1115-1134
[6]   Some properties for the solutions of a general Activator-Inhibitor model [J].
Chen, Shaohua .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) :919-928
[7]   A singular Gierer-Meinhardt system of elliptic equations [J].
Choi, YS ;
McKenna, PJ .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (04) :503-522
[8]   Multi-bump ground states of the Gierer-Meinhardt system in R2 [J].
Del Pino, M ;
Kowalczyk, M ;
Wei, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (01) :53-85
[9]   Boundary spikes in the Gierer-Meinhardt system [J].
del Pino, M ;
Felmer, P ;
Kowalczyk, M .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2002, 1 (04) :437-456
[10]   The Gierer & Meinhardt system: The breaking of homoclinics and multi-bump ground states [J].
del Pino, M ;
Kowalczyk, M ;
Chen, XF .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (03) :419-439