Sub-μm c-axis structural domain size of graphene paper uncovered by low-momentum phonon scattering

被引:16
作者
Han, Meng [1 ]
Liu, Jing [1 ]
Xie, Yangsu [1 ,2 ]
Wang, Xinwei [1 ]
机构
[1] Iowa State Univ, Dept Mech Engn, 2010 Black Engn Bldg, Ames, IA 50011 USA
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518055, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
TEMPERATURE THERMAL-CONDUCTIVITY; MULTILAYER GRAPHENE; SINGLE-LAYER; GRAPHITE; DISPERSION; OXIDE; TRANSPORT; HEAT; DIFFUSIVITY; REDUCTION;
D O I
10.1016/j.carbon.2017.10.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The c-axis thermal conductivity (k(c)) of graphene paper (GP) is measured from 295 K to 12.3 K and extrapolation is used to identify the residual thermal reffusivity at the 0 K limit. To uncover the structural domain size based on the residual thermal reffusivity, we develop an anisotropic specific heat model to identify the phonons that sustain the heat conduction along the c-axis. This model predicts a c-mean free path (MFP) of 165 nm for graphite at room temperature (RT), very close to the value of 146 nm by molecular dynamics (MD) modeling. For widely studied normal graphite materials, this model predicts a structure domain size of 375 nm, close to the 404 nm grain size uncovered by transmission electron microscopy. Using our model, the c-MFP induced by defect in the GP is evaluated at 234 nm based on the low-momentum phonon scattering. This structural domain size significantly exceeds the graphene flake thickness (1.68-2.01 nm) in our GP, uncovering excellent c-direction atomic structure order. By subtracting the residual thermal reffusivity, the defect-free k(c) and c-MFP of GP are obtained. At RT, the defect-free k(c) is 9.67 Wm(-1)K(-1), close to 11.6 Wm(-1)K(-1) of graphite from the recent MD simulations. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:532 / 543
页数:12
相关论文
共 82 条
[1]   Phonon dynamics of graphene on metals [J].
Al Taleb, Amjad ;
Far-As, Daniel .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (10)
[2]   Graphene on Metallic Substrates: Suppression of the Kohn Anomalies in the Phonon Dispersion [J].
Allard, Adrien ;
Wirtz, Ludger .
NANO LETTERS, 2010, 10 (11) :4335-4340
[3]   Ab initio study on stacking sequences, free energy, dynamical stability and potential energy surfaces of graphite structures [J].
Anees, P. ;
Valsakumar, M. C. ;
Chandra, Sharat ;
Panigrahi, B. K. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2014, 22 (03)
[4]  
[Anonymous], 2012, HEAT CAPACITY THERMA
[5]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[6]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[7]  
Chen SS, 2012, NAT MATER, V11, P203, DOI [10.1038/NMAT3207, 10.1038/nmat3207]
[8]   The fabrication of high-aspect-ratio, size-tunable nanopore arrays by modified nanosphere lithography [J].
Chen, X. ;
Wei, X. ;
Jiang, K. .
NANOTECHNOLOGY, 2009, 20 (42)
[9]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[10]   LOW-TEMPERATURE THERMAL-CONDUCTIVITY OF ISOTROPIC AND ORIENTED POLYMERS [J].
CHOY, CL ;
GREIG, D .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (02) :169-179