Quantifying the phenome-wide disease burden of obesity using electronic health records and genomics

被引:3
|
作者
Robinson, Jamie R. [1 ,2 ]
Carroll, Robert J. [1 ]
Bastarache, Lisa [1 ]
Chen, Qingxia [1 ,3 ]
Pirruccello, James [4 ]
Mou, Zongyang [5 ]
Wei, Wei-Qi
Connolly, John [6 ]
Mentch, Frank [6 ]
Crane, Paul K. [7 ]
Hebbring, Scott J. [8 ]
Crosslin, David R. [9 ]
Gordon, Adam S. [10 ]
Rosenthal, Elisabeth A. [11 ]
Stanaway, Ian B.
Hayes, M. Geoffrey [12 ]
Wei, Wei [13 ]
Petukhova, Lynn [14 ]
Namjou-Khales, Bahram [15 ]
Zhang, Ge [15 ]
Safarova, Mayya S. [16 ]
Walton, Nephi A. [17 ]
Still, Christopher [17 ]
Bottinger, Erwin P. [18 ]
Loos, Ruth J. F. [18 ]
Murphy, Shawn N. [19 ]
Jackson, Gretchen P.
Abumrad, Naji
Kullo, Iftikhar J.
Jarvik, Gail P.
Larson, Eric B. [20 ]
Weng, Chunhua [21 ,22 ]
Roden, Dan
Khera, Amit V. [23 ]
Denny, Joshua C. [24 ]
机构
[1] Vanderbilt Univ, Vanderbilt Univ Med Ctr, Dept Biomed Informat, Nashville, TN USA
[2] Vanderbilt Univ, Vanderbilt Univ Med Ctr, Dept Surg, Nashville, TN USA
[3] Vanderbilt Univ, Vanderbilt Univ Med Ctr, Dept Biostat, Nashville, TN USA
[4] Massachusetts Gen Hosp, Ctr Gen Med, Boston, MA USA
[5] Univ Calif San Diego, Dept Surg, San Diego, CA USA
[6] Childrens Hosp Philadelphia, Ctr Appl Gen, Philadelphia, PA USA
[7] Univ Washington, Dept Med, Seattle, WA USA
[8] Marshfield Clin Res Inst, Ctr Human Genet, Marshfield, WI USA
[9] Univ Washington, Dept Biomed Informat & Med Educ, Seattle, WA USA
[10] Northwestern Univ, Feinberg Sch Med, Dept Pharmacol, Chicago, IL USA
[11] Univ Washington, Univ Washington Med Ctr, Dept Med Med Genet, Seattle, WA USA
[12] Univ Washington, Univ Washington Med Ctr, Dept Genome Sci, Seattle, WA USA
[13] Northwestern Univ, Feinberg Sch Med, Dept Med, Div Endocrinol Metab & Mol Med, Chicago, IL USA
[14] Univ Pittsburgh, Med Ctr, Pittsburgh, PA USA
[15] Columbia Univ, Dept Epidmiol, New York, NY USA
[16] Cincinnati Childrens Hosp Med Ctr, Ctr Autoimmune Gen & Etiol, Cincinnati, OH USA
[17] Mayo Clin, Dept Cardiovasc Dis, Rochester, MN USA
[18] Geisinger Hlth Syst, Dept Biomed & Translat Informat, Danville, PA USA
[19] Charles Bronfman Inst Personalized Med Mt Sinai, Mindich Child Hlth & Dev Inst, New York, NY USA
[20] Partners Healthcare, Dept Neurol, Boston, MA USA
[21] Kaiser Permanente Washington Hlth Res Inst, Seattle, WA USA
[22] Columbia Univ, Dept Biomed Informat, New York, NY USA
[23] Broad Inst MIT & Harvard, Cardiovasc Dis Initiat, Cambridge, MA USA
[24] Natl Inst Hlth, All US Res Program, Bethesda, MD USA
关键词
BODY-MASS INDEX; RISK SCORES; UK BIOBANK; ASSOCIATION; PREDICTION; ADIPOSITY; MORTALITY; ONSET;
D O I
10.1002/oby.23561
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective High BMI is associated with many comorbidities and mortality. This study aimed to elucidate the overall clinical risk of obesity using a genome- and phenome-wide approach. Methods This study performed a phenome-wide association study of BMI using a clinical cohort of 736,726 adults. This was followed by genetic association studies using two separate cohorts: one consisting of 65,174 adults in the Electronic Medical Records and Genomics (eMERGE) Network and another with 405,432 participants in the UK Biobank. Results Class 3 obesity was associated with 433 phenotypes, representing 59.3% of all billing codes in individuals with severe obesity. A genome-wide polygenic risk score for BMI, accounting for 7.5% of variance in BMI, was associated with 296 clinical diseases, including strong associations with type 2 diabetes, sleep apnea, hypertension, and chronic liver disease. In all three cohorts, 199 phenotypes were associated with class 3 obesity and polygenic risk for obesity, including novel associations such as increased risk of renal failure, venous insufficiency, and gastroesophageal reflux. Conclusions This combined genomic and phenomic systematic approach demonstrated that obesity has a strong genetic predisposition and is associated with a considerable burden of disease across all disease classes.
引用
收藏
页码:2477 / 2488
页数:12
相关论文
共 50 条
  • [1] Phenome-Wide Association Study of Polygenic Risk Score for Alzheimer's Disease in Electronic Health Records
    Fu, Mingzhou
    Chang, Timothy S.
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [2] Genome-wide and Phenome-wide Approaches to Understand Variable Drug Actions in Electronic Health Records
    Robinson, Jamie R.
    Denny, Joshua C.
    Roden, Dan M.
    Van Driest, Sara L.
    CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2018, 11 (02): : 112 - 122
  • [3] PheW2P2V: a phenome-wide prediction framework with weighted patient representations using electronic health records
    Guo, Jia
    Kiryluk, Krzysztof
    Wang, Shuang
    JAMIA OPEN, 2024, 7 (03)
  • [4] Applying semantic web technologies for phenome-wide scan using an electronic health record linked Biobank
    Pathak, Jyotishman
    Kiefer, Richard C.
    Bielinski, Suzette J.
    Chute, Christopher G.
    JOURNAL OF BIOMEDICAL SEMANTICS, 2012, 3
  • [5] Exploring the clinical and genetic associations of adult weight trajectories using electronic health records in a racially diverse biobank: a phenome-wide and polygenic risk study
    Xu, Jiayi
    Johnson, Jessica S.
    Signer, Rebecca
    Birgegard, Andreas
    Jordan, Jennifer
    Kennedy, Martin A.
    Landen, Mikael
    Maguire, Sarah L.
    Martin, Nicholas G.
    Mortensen, Preben Bo
    Petersen, Liselotte, V
    Thornton, Laura M.
    Bulik, Cynthia M.
    Huckins, Laura M.
    LANCET DIGITAL HEALTH, 2022, 4 (08): : E604 - E614
  • [6] Using electronic health records to drive discovery in disease genomics
    Kohane, Isaac S.
    NATURE REVIEWS GENETICS, 2011, 12 (06) : 417 - 428
  • [7] Phenome-wide Burden of Copy-Number Variation in the UK Biobank
    Aguirre, Matthew
    Rivas, Manuel A.
    Priest, James
    AMERICAN JOURNAL OF HUMAN GENETICS, 2019, 105 (02) : 373 - 383
  • [8] Phenome-wide Mendelian randomization analysis reveals multiple health comorbidities of coeliac disease
    Yuan, Shuai
    Jiang, Fangyuan
    Chen, Jie
    Lebwohl, Benjamin
    Green, Peter H. R.
    Leffer, Daniel
    Larsson, Susanna C.
    Li, Xue
    Ludvigsson, Jonas F.
    EBIOMEDICINE, 2024, 101
  • [9] Unravelling the human genome-phenome relationship using phenome-wide association studies
    Bush, William S.
    Oetjens, Matthew T.
    Crawford, Dana C.
    NATURE REVIEWS GENETICS, 2016, 17 (03) : 129 - 145
  • [10] Phenome-wide Mendelian randomization study of plasma triglyceride levels and 2600 disease traits
    Park, Joshua K.
    Bafna, Shantanu
    Forrest, Iain S.
    Duffy, Aine
    Marquez-Luna, Carla
    Petrazzini, Ben O.
    Vy, Ha My
    Jordan, Daniel M.
    Verbanck, Marie
    Narula, Jagat
    Rosenson, Robert S.
    Rocheleau, Ghislain
    Do, Ron
    Liu, Nianjun
    ELIFE, 2023, 12