Dispersion relations and soft pion theorems for K → π π

被引:27
作者
Büchler, M [1 ]
Colangelo, G [1 ]
Kambor, J [1 ]
Orellana, F [1 ]
机构
[1] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland
关键词
D O I
10.1016/S0370-2693(01)01098-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a new method to obtain the K --> pi pi amplitude from K --> pi pi which allows one to fully account for the effects of final state interactions. The method is based on a set of dispersion relations for the K --> pi amplitude in which the weak Hamiltonian carries momentum. The soft pion theorem, which relates this amplitude to the K --> pi amplitude, can be used to determine one of the two subtraction constants-the second constant is at present known only to leading order in chiral perturbation theory. We solve the dispersion relations numerically and express the result in terms of the unknown higher order corrections to this subtraction constant. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 31 条
[1]  
Ananthanarayan B, 2001, EUR PHYS J C, V19, P517, DOI 10.1007/s100520100629
[2]   Dispersive analysis of the decay eta->3 pi [J].
Anisovich, AV ;
Leutwyler, H .
PHYSICS LETTERS B, 1996, 375 (1-4) :335-342
[3]   THE DELTA-I = 1/2 RULE IN THE LARGE-N LIMIT [J].
BARDEEN, WA ;
BURAS, AJ ;
GERARD, JM .
PHYSICS LETTERS B, 1986, 180 (1-2) :133-140
[4]   THE K-]PI-PI DECAYS IN THE LARGE-N LIMIT - QUARK EVOLUTION [J].
BARDEEN, WA ;
BURAS, AJ ;
GERARD, JM .
NUCLEAR PHYSICS B, 1987, 293 (3-4) :787-811
[5]   A CONSISTENT ANALYSIS OF THE DELTA-I=1/2 RULE FOR K-DECAYS [J].
BARDEEN, WA ;
BURAS, AJ ;
GERARD, JM .
PHYSICS LETTERS B, 1987, 192 (1-2) :138-144
[6]   APPLICATION OF CHIRAL PERTURBATION-THEORY TO K-]2-PI DECAYS [J].
BERNARD, C ;
DRAPER, T ;
SONI, A ;
POLITZER, HD ;
WISE, MB .
PHYSICAL REVIEW D, 1985, 32 (09) :2343-2347
[7]   The ΔI=1/2 rule and (B)over-cap-BK at O(p4) in the chiral expansion [J].
Bertolini, S ;
Eeg, JO ;
Fabbrichesi, M ;
Lashin, EI .
NUCLEAR PHYSICS B, 1998, 514 (1-2) :63-92
[8]   ε′/ε at O(p4) in the chiral expansion [J].
Bertolini, S ;
Eeg, JO ;
Fabbrichesi, M ;
Lashin, EI .
NUCLEAR PHYSICS B, 1998, 514 (1-2) :93-112
[9]  
Bijnens J, 2000, J HIGH ENERGY PHYS
[10]  
Bijnens J, 1999, J HIGH ENERGY PHYS