Geometric interpolation in symmetrically-normed ideals

被引:1
作者
Conde, Cristian [1 ]
机构
[1] IAM CONICET, RA-1083 Buenos Aires, DF, Argentina
关键词
complex interpolation method; Finsler norm; symmetrically-normed ideal;
D O I
10.1016/j.laa.2008.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to apply the complex interpolation method to norms of n-tuples of operators in a symmetrically-normed ideal J (phi) subset of B(H) defined by a phi symmetric norming function (s.n.f.). The norms considered define Finsler metrics in a certain manifold of positive operators, and can be regarded as weighted phi-norms, the weight being a positive invertible operator. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:819 / 834
页数:16
相关论文
共 20 条
[1]  
Bergh J., 1976, Interpolation spaces. An introduction
[2]   On the exponential metric increasing property [J].
Bhatia, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 375 :211-220
[3]  
Calderon A.-P., 1964, Studia Math., V24, P113, DOI DOI 10.4064/SM-24-2-113-190
[4]   Geometric interpolation in p-Schatten class [J].
Conde, Cristian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) :920-931
[5]   AN OPERATOR-INEQUALITY [J].
CORACH, G ;
PORTA, H ;
RECHT, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 142 :153-158
[6]  
CURTO R, 1991, ELEMENTARY OPERATION, P3
[7]  
DELAHARPE P, 1972, LECT NOTES MATH
[8]  
Fujii J. I., 1989, Math. Japon., V34, P341
[9]  
Gohberg I.C., 1969, Introduction to the theory of linear nonselfadjoint operators, V18, pxv+378
[10]   Comparison of various means for operators [J].
Hiai, F ;
Kosaki, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (02) :300-323