Inverse Dynamics vs. Forward Dynamics in Direct Transcription Formulations for Trajectory Optimization

被引:8
作者
Ferrolho, Henrique [1 ]
Ivan, Vladimir [1 ]
Merkt, Wolfgang [2 ]
Havoutis, Ioannis [2 ]
Vijayakumar, Sethu [1 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
[2] Univ Oxford, Oxford Robot Inst, Oxford, England
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021) | 2021年
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
NONLINEAR OPTIMIZATION;
D O I
10.1109/ICRA48506.2021.9561306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Benchmarks of state-of-the-art rigid-body dynamics libraries report better performance solving the inverse dynamics problem than the forward alternative. Those benchmarks encouraged us to question whether that computational advantage would translate to direct transcription, where calculating rigid-body dynamics and their derivatives accounts for a significant share of computation time. In this work, we implement an optimization framework where both approaches for enforcing the system dynamics are available. We evaluate the performance of each approach for systems of varying complexity, for domains with rigid contacts. Our tests reveal that formulations using inverse dynamics converge faster, require less iterations, and are more robust to coarse problem discretization. These results indicate that inverse dynamics should be preferred to enforce the nonlinear system dynamics in simultaneous methods, such as direct transcription.
引用
收藏
页码:12752 / 12758
页数:7
相关论文
共 28 条
[1]  
Betts JT, 2010, ADV DES CONTROL, P411
[2]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[3]  
Byrd RH, 2006, Knitro: an integrated package for nonlinear optimization
[4]  
Caron S, 2015, ROBOTICS: SCIENCE AND SYSTEMS XI
[5]  
Carpentier J., 2019, IEEE INT S SYST INT
[6]  
Chen J., 2016, P 20 IEEE HIGH PERF
[7]  
Erez T, 2012, IEEE INT C INT ROBOT, P4914, DOI 10.1109/IROS.2012.6386181
[8]   RBDL: an efficient rigid-body dynamics library using recursive algorithms [J].
Felis, Martin L. .
AUTONOMOUS ROBOTS, 2017, 41 (02) :495-511
[9]  
Ferrolho H., 2020, TORA JL
[10]  
Ferrolho H., 2020, IEEE RSJ INT C INT R