Linear complexity hexahedral mesh generation

被引:23
作者
Eppstein, D [1 ]
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92697 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1999年 / 12卷 / 1-2期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0925-7721(98)00032-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that any polyhedron forming a topological ball with an even number of quadrilateral sides can be partitioned into O(il) topological cubes, meeting face to face. The result generalizes to non-simply-connected polyhedra satisfying an additional bipartiteness condition. The same techniques can also be used to reduce the geometric version of the hexahedral mesh generation problem to a finite case analysis amenable to machine solution. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 14 条
[1]  
[Anonymous], P 9 ANN S COMP GEOM
[2]  
BENZINGER EA, 1995, APPL THEOR ELECTROPH, V4, P179
[3]  
Benzley S., 1995, Proceedings of the Eleventh Annual Symposium on Computational Geometry, pC4
[4]  
BERN M, 1995, COMPUTING EUCLIDEAN, P47
[5]  
BERN M, 1997, P 6 INT MESH ROUNDT, P7
[6]   TRIANGULATING A NONCONVEX POLYTOPE [J].
CHAZELLE, B ;
PALIOS, L .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (05) :505-526
[7]  
Chazelle B., 1994, Proceedings of the Tenth Annual Symposium on Computational Geometry, P231, DOI 10.1145/177424.177975
[8]   ON THE STANLEY RING OF A CUBICAL COMPLEX [J].
HETYEI, G .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 14 (03) :305-330
[9]  
MITCHELL SA, 1995, P 5 WORKSH COMP GEOM
[10]  
Muller-Hannemann M., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P193, DOI 10.1145/262839.262960