BINDING NUMBER, MINIMUM DEGREE AND (g, f)-FACTORS OF GRAPHS

被引:0
|
作者
Yashima, Takamasa [1 ]
机构
[1] Keio Univ, Dept Math, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
关键词
binding number; degree condition; (g; f)-factor;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a and b be integers with 2 <= a < b, and let G be a graph of order n with n >= (a+b-1)(2)/a+1 and the minimum degree delta(G) >= 1+ (b - 2)n/a+b-1. Let g and f be nonnegative integer-valued functions defined on V (G) such that a <= g(x) < f (x) <= b for each x is an element of V (G). We prove that if the binding number bind(G) >= 1 + b-2/a+1, then G has a (g, f)-factor.
引用
收藏
页码:137 / 141
页数:5
相关论文
共 50 条
  • [1] Binding number and minimum degree for the existence of (g,f,n)-critical graphs
    Liu H.
    Liu G.
    Journal of Applied Mathematics and Computing, 2009, 29 (1-2) : 207 - 216
  • [2] Binding number and Hamiltonian (g, f)-factors in graphs
    Cai J.
    Liu G.
    Journal of Applied Mathematics and Computing, 2007, 25 (1-2) : 383 - 388
  • [3] Binding number and Hamiltonian (g, f)-factors in graphs II
    Cai, Jiansheng
    Liu, Guizhen
    Hou, Jianfeng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (09) : 1325 - 1331
  • [4] Independence Number and Minimum Degree for the Existence of (g, f, n)-Critical Graphs
    Zhou, Sizhong
    Pan, Quanru
    Xu, Yang
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01): : 373 - 381
  • [5] Minimum degree of graphs and (g,f,n)-critical graphs
    Zhou, Sizhong
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 1871 - 1873
  • [6] A Degree Condition for Graphs to Have (g, f)-Factors
    Zhou, Sizhong
    Pu, Bingyuan
    ARS COMBINATORIA, 2012, 107 : 307 - 315
  • [7] Binding number and minimum degree for (a, b, k)-critical graphs
    Zhou, Sizhong
    Duan, Ziming
    UTILITAS MATHEMATICA, 2012, 88 : 309 - 315
  • [8] Binding Number, Minimum Degree, and Cycle Structure in Graphs
    Bauer, D.
    Schmeichel, E.
    JOURNAL OF GRAPH THEORY, 2012, 71 (02) : 219 - 228
  • [9] BINDING NUMBER AND MINIMUM DEGREE FOR [a,b]-FACTORS
    CHEN Ciping Beijing Agricultural Engineering University
    SystemsScienceandMathematicalSciences, 1993, (02) : 179 - 185
  • [10] Binding numbers and restricted fractional (g, f)-factors in graphs
    Zhou, Sizhong
    DISCRETE APPLIED MATHEMATICS, 2021, 305 : 350 - 356