High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst

被引:214
作者
Qiao, Yanxia [1 ]
Liu, Qian [2 ]
Lu, Siyu [3 ,4 ]
Chen, Guang [5 ,6 ]
Gao, Shuyan [7 ]
Lu, Wenbo [1 ]
Sun, Xuping [2 ]
机构
[1] Shanxi Normal Univ, Sch Chem & Mat Sci, Key Lab Magnet Mol & Magnet Informat Mat, Minist Educ, Linfen 041004, Shanxi, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[3] Zhengzhou Univ, Green Catalysis Ctr, Zhengzhou 450001, Henan, Peoples R China
[4] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Henan, Peoples R China
[5] Qufu Normal Univ, Sch Chem & Chem Engn, Key Lab Life Organ Anal, Qufu 273165, Shandong, Peoples R China
[6] Qufu Normal Univ, Sch Chem & Chem Engn, Key Lab Pharmaceut Intermediates & Anal Nat Med, Qufu 273165, Shandong, Peoples R China
[7] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; ELECTROCHEMICAL SENSOR; CATALYST ELECTRODE; HYDROGEN-PEROXIDE; NANOWIRES ARRAY; NANOSHEET ARRAY; H2O2; SUPERCAPACITOR; COORDINATION; OXIDATION;
D O I
10.1039/d0tb00131g
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Conductive metal-organic frameworks (MOFs) have been studied extensively in applications like water electrolysis, gas storage, and supercapacitors due to their high conductivity and large pore volume. In this communication, we report the first use of a conductive Ni-MOF as a non-noble-metal catalyst for efficient electro-oxidation of glucose in alkaline electrolyte. As an electrochemical sensor for glucose detection, this Ni-MOF shows a fast response time of less than 3 s, a low detection limit of 0.66 mu M (S/N = 3), and a high sensitivity of 21 744 mu A mM(-1) cm(-2). This glucose sensor also displays excellent selectivity, stability and reproducibility, and its application for the detection of glucose in real samples is also demonstrated successfully.
引用
收藏
页码:5411 / 5415
页数:5
相关论文
共 39 条
[1]   Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors [J].
Chen, Qiulin ;
Lei, Shuijin ;
Deng, Peiqin ;
Ou, Xiuling ;
Chen, Lianfu ;
Wang, Wei ;
Xiao, Yanhe ;
Cheng, Baochang .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (36) :19323-19332
[2]   Three-Dimensional Ni2P Nanoarray: An Efficient Catalyst Electrode for Sensitive and Selective Nonenzymatic Glucose Sensing with High Specificity [J].
Chen, Tao ;
Liu, Danni ;
Lu, Wenbo ;
Wang, Kunyang ;
Du, Gu ;
Asiri, Abdullah M. ;
Sun, Xuping .
ANALYTICAL CHEMISTRY, 2016, 88 (16) :7885-7889
[3]   Ultrahigh Porosity in Metal-Organic Frameworks [J].
Furukawa, Hiroyasu ;
Ko, Nakeun ;
Go, Yong Bok ;
Aratani, Naoki ;
Choi, Sang Beom ;
Choi, Eunwoo ;
Yazaydin, A. Oezguer ;
Snurr, Randall Q. ;
O'Keeffe, Michael ;
Kim, Jaheon ;
Yaghi, Omar M. .
SCIENCE, 2010, 329 (5990) :424-428
[4]   Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion [J].
Guan, Bu Yuan ;
Yu, Xin Yao ;
Wu, Hao Bin ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2017, 29 (47)
[5]   New Porous Crystals of Extended Metal-Catecholates [J].
Hmadeh, Mohamad ;
Lu, Zheng ;
Liu, Zheng ;
Gandara, Felipe ;
Furukawa, Hiroyasu ;
Wan, Shun ;
Augustyn, Veronica ;
Chang, Rui ;
Liao, Lei ;
Zhou, Fei ;
Perre, Emilie ;
Ozolins, Vidvuds ;
Suenaga, Kazu ;
Duan, Xiangfeng ;
Dunn, Bruce ;
Yamamto, Yasuaki ;
Terasaki, Osamu ;
Yaghi, Omar M. .
CHEMISTRY OF MATERIALS, 2012, 24 (18) :3511-3513
[6]   Graphene-like metal-organic frameworks: morphology control, optimization of thin film electrical conductivity and fast sensing applications [J].
Hoppe, Bastian ;
Hindricks, Karen D. J. ;
Warwas, Dawid P. ;
Schulze, Hendrik A. ;
Mohmeyer, Alexander ;
Pinkvos, Tim J. ;
Zailskas, Saskia ;
Krey, Marc R. ;
Belke, Christopher ;
Koenig, Sandra ;
Froeba, Michael ;
Haug, Rolf J. ;
Behrens, Peter .
CRYSTENGCOMM, 2018, 20 (41) :6458-6471
[7]   3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection [J].
Huo, Huanhuan ;
Zhao, Yongqing ;
Xu, Cailing .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (36) :15111-15117
[8]   Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine [J].
Karim, Md. N. ;
Anderson, Samuel R. ;
Singh, Sanjay ;
Ramanathan, Rajesh ;
Bansal, Vipul .
BIOSENSORS & BIOELECTRONICS, 2018, 110 :8-15
[9]   Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor [J].
Karpova, Elena V. ;
Shcherbacheva, Elizaveta V. ;
Galushin, Andrei A. ;
Vokhmyanina, Darya V. ;
Karyakina, Elena E. ;
Karyakin, Arkady A. .
ANALYTICAL CHEMISTRY, 2019, 91 (06) :3778-3783
[10]   A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer [J].
Kim, Dong-Min ;
Moon, Jong-Min ;
Lee, Won-Chul ;
Yoon, Jang-Hee ;
Choi, Cheol Soo ;
Shim, Yoon-Bo .
BIOSENSORS & BIOELECTRONICS, 2017, 91 :276-283