Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT

被引:66
作者
Ringe, Stefan [1 ,2 ]
Oberhofer, Harald [1 ,2 ]
Hille, Christoph [1 ,2 ]
Matera, Sebastian [3 ]
Reuter, Karsten [1 ,2 ]
机构
[1] Tech Univ Munich, Chair Theoret Chem, Lichtenbergstr 4, D-85747 Garching, Germany
[2] Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany
[3] Free Univ Berlin, Fachbereich Math & Informat, Otto von Simson Str 19, D-14195 Berlin, Germany
关键词
ELECTRIC-DOUBLE-LAYER; MOLECULAR-DYNAMICS SIMULATIONS; INHOMOGENEOUS COULOMB FLUIDS; ELECTROLYTE-SOLUTION; IMAGE INTERACTIONS; FREE-ENERGIES; CONTINUUM; ELECTROSTATICS; SOLVENT; BINDING;
D O I
10.1021/acs.jctc.6b00435
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.
引用
收藏
页码:4052 / 4066
页数:15
相关论文
共 88 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS, P896
[2]   Dipolar Poisson-Boltzmann equation: Ions and dipoles close to charge interfaces [J].
Abrashkin, Ariel ;
Andelman, David ;
Orland, Henri .
PHYSICAL REVIEW LETTERS, 2007, 99 (07)
[3]   CHARGE RENORMALIZATION, OSMOTIC-PRESSURE, AND BULK MODULUS OF COLLOIDAL CRYSTALS - THEORY [J].
ALEXANDER, S ;
CHAIKIN, PM ;
GRANT, P ;
MORALES, GJ ;
PINCUS, P ;
HONE, D .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (11) :5776-5781
[4]  
Andelman D., 1995, Structure and Dynamics of Membranes, P603, DOI [10.1016/S1383-8121(06)80005-9, DOI 10.1016/S1383-8121(06)80005-9]
[5]   Revised self-consistent continuum solvation in electronic-structure calculations [J].
Andreussi, Oliviero ;
Dabo, Ismaila ;
Marzari, Nicola .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (06)
[6]   Incorporation of excluded-volume correlations into Poisson-Boltzmann theory [J].
Antypov, D ;
Barbosa, MC ;
Holm, C .
PHYSICAL REVIEW E, 2005, 71 (06)
[7]  
Attard P., 1996, ADV CHEM PHYS, V92, P1, DOI DOI 10.1002/9780470141519.CH1
[8]   ELECTRIC-FIELD EFFECTS ON THE SURFACE ADSORBATE INTERACTION - CLUSTER MODEL STUDIES [J].
BAGUS, PS ;
PACCHIONI, G .
ELECTROCHIMICA ACTA, 1991, 36 (11-12) :1659-1667
[9]  
Barrat JL, 1996, ADV CHEM PHYS, V94, P1, DOI 10.1002/9780470141533.ch1
[10]  
Blum L., 1992, Fundamentals of Inhomogeneous Fluids, P239