Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT

被引:64
|
作者
Ringe, Stefan [1 ,2 ]
Oberhofer, Harald [1 ,2 ]
Hille, Christoph [1 ,2 ]
Matera, Sebastian [3 ]
Reuter, Karsten [1 ,2 ]
机构
[1] Tech Univ Munich, Chair Theoret Chem, Lichtenbergstr 4, D-85747 Garching, Germany
[2] Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany
[3] Free Univ Berlin, Fachbereich Math & Informat, Otto von Simson Str 19, D-14195 Berlin, Germany
关键词
ELECTRIC-DOUBLE-LAYER; MOLECULAR-DYNAMICS SIMULATIONS; INHOMOGENEOUS COULOMB FLUIDS; ELECTROLYTE-SOLUTION; IMAGE INTERACTIONS; FREE-ENERGIES; CONTINUUM; ELECTROSTATICS; SOLVENT; BINDING;
D O I
10.1021/acs.jctc.6b00435
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.
引用
收藏
页码:4052 / 4066
页数:15
相关论文
共 50 条
  • [1] Sensitivities to parameterization in the size-modified Poisson-Boltzmann equation
    Harris, Robert C.
    Boschitsch, Alexander H.
    Fenley, Marcia O.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (07):
  • [2] Biophysical applications of the size-modified Poisson-Boltzmann equation
    Fenley, Marcia Oliveira
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [3] On the analysis and application of an ion size-modified Poisson-Boltzmann equation
    Li, Jiao
    Ying, Jinyong
    Xie, Dexuan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 47 : 188 - 203
  • [4] Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers
    Wang, Nuo
    Zhou, Shenggao
    Kekenes-Huskey, Peter M.
    Li, Bo
    McCammon, J. Andrew
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (51): : 14827 - 14832
  • [5] Comparing the Predictions of the Nonlinear Poisson-Boltzmann Equation and the Ion Size-Modified Poisson-Boltzmann Equation for a Low-Dielectric Charged Spherical Cavity in an Aqueous Salt Solution
    Silalahi, Alexander R. J.
    Boschitsch, Alexander H.
    Harris, Robert C.
    Fenley, Marcia O.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (12) : 3631 - 3639
  • [6] Size-Modified Poisson-Boltzmann Electrostatics for Realistic Biomolecular Systems
    Wang, Nuo
    Kekenes-Huskey, Peter
    Zhou, Shenggao
    Li, Bo
    McCammon, J. Andrew
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 408A - 408A
  • [7] AN EFFECTIVE MINIMIZATION PROTOCOL FOR SOLVING A SIZE-MODIFIED POISSON-BOLTZMANN EQUATION FOR BIOMOLECULE IN IONIC SOLVENT
    Li, Jiao
    Xie, Dexuan
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (02) : 286 - 301
  • [8] Formulation of a new and simple nonuniform size-modified poisson-boltzmann description
    Boschitsch, Alexander H.
    Danilov, Pavel V.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2012, 33 (11) : 1152 - 1164
  • [9] An approximate analytic solution to the modified Poisson-Boltzmann equation: effects of ionic size
    Hiroyuki Ohshima
    Colloid and Polymer Science, 2016, 294 : 2121 - 2125
  • [10] An approximate analytic solution to the modified Poisson-Boltzmann equation: effects of ionic size
    Ohshima, Hiroyuki
    COLLOID AND POLYMER SCIENCE, 2016, 294 (12) : 2121 - 2125