A novel method for reliability analysis with interval parameters based on active learning Kriging and adaptive radial-based importance sampling

被引:7
|
作者
Wang, Pan [1 ]
Zhou, Hanyuan [1 ,2 ]
Hu, Huanhuan [1 ]
Zhang, Zheng [1 ]
Li, Haihe [1 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710072, Shaanxi, Peoples R China
[2] Xian Aerosp Prop Inst, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
active learning Kriging; adaptive radial based importance sampling; interval distribution parameter; monotonicity; reliability analysis; GLOBAL SENSITIVITY-ANALYSIS; STRUCTURAL RELIABILITY; DESIGN OPTIMIZATION; UNCERTAINTY; QUANTIFICATION;
D O I
10.1002/nme.6968
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For the reliability analysis of complex engineering structures, the estimation of the bounds of failure probability with interval distribution parameters is an important task when the perfect information of random variables is unavailable and the corresponding probability distributions are imprecise. The present work proposes an active learning Kriging-based method combining with adaptive radial based importance sampling to compute the bounds of failure probability. For computing the bounds, the classical double-loop optimization model is always investigated in the standard normal space. To decouple the computation, the inner-loop optimization is addressed with the monotonicity of the commonly used probability distributions. When suffering the high dimensional problem, the dimension reduction method is introduced in monotonic analysis. While for the outer-loop optimization, the normal space is decomposed with spheres, then the proposed method with an adaptive updated procedure is given. With this method, the bounds of failure probability can be estimated efficiently, especial for the rare event. Numerical examples are investigated to validate the rationality and superiority of the proposed method. Finally, the proposed method is applied to the reliability analysis of turbine blade and aeronautical hydraulic pipeline system with interval distribution parameters.
引用
收藏
页码:3264 / 3284
页数:21
相关论文
共 50 条
  • [41] AK-HMC-IS: A Novel Importance Sampling Method for Efficient Reliability Analysis Based on Active Kriging and Hybrid Monte Carlo Algorithm
    Li, Gang
    Jiang, Long
    Lu, Bin
    He, Wanxin
    JOURNAL OF MECHANICAL DESIGN, 2022, 144 (11)
  • [42] Active Kriging-Based Adaptive Importance Sampling for Reliability and Sensitivity Analyses of Stator Blade Regulator
    Zhang, Hong
    Song, Lukai
    Bai, Guangchen
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 134 (03): : 1871 - 1897
  • [43] Global reliability sensitivity analysis by Sobol-based dynamic adaptive kriging importance sampling
    Cadini, Francesco
    Lombardo, Simone Salvatore
    Giglio, Marco
    STRUCTURAL SAFETY, 2020, 87
  • [44] Reliability and reliability sensitivity analysis of structure by combining adaptive linked importance sampling and Kriging reliability method
    Liu, Fuchao
    Wei, Pengfei
    Zhou, Changcong
    Yue, Zhufeng
    CHINESE JOURNAL OF AERONAUTICS, 2020, 33 (04) : 1218 - 1227
  • [45] Reliability and reliability sensitivity analysis of structure by combining adaptive linked importance sampling and Kriging reliability method
    Fuchao LIU
    Pengfei WEI
    Changcong ZHOU
    Zhufeng YUE
    Chinese Journal of Aeronautics, 2020, 33 (04) : 1218 - 1227
  • [46] Reliability and reliability sensitivity analysis of structure by combining adaptive linked importance sampling and Kriging reliability method
    Fuchao LIU
    Pengfei WEI
    Changcong ZHOU
    Zhufeng YUE
    Chinese Journal of Aeronautics , 2020, (04) : 1218 - 1227
  • [47] An active learning Kriging-based multipoint sampling strategy for structural reliability analysis
    Tian, Zongrui
    Zhi, Pengpeng
    Guan, Yi
    He, Xinghua
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (01) : 524 - 549
  • [48] Error-guided method combining adaptive learning kriging model and parallel-tempering-based importance sampling for system reliability analysis
    Wang, Tai
    Yang, Xufeng
    Mi, Caiying
    ENGINEERING OPTIMIZATION, 2024, 56 (04) : 525 - 547
  • [49] A novel projection outline based active learning method and its combination with Kriging metamodel for hybrid reliability analysis with random and interval variables
    Zhang, Jinhao
    Xiao, Mi
    Gao, Liang
    Fu, Junjian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 : 32 - 52
  • [50] An adaptive method fusing the kriging model and multimodal importance sampling for profust reliability analysis
    Yang, Xufeng
    Cheng, Xin
    Liu, Zeqing
    Wang, Tai
    ENGINEERING OPTIMIZATION, 2022, 54 (11) : 1870 - 1886