Use of an Artificial Neural Network to Determine Prognostic Factors in Colorectal Cancer Patients

被引:1
作者
Gohari, Mahmood Reza [2 ,3 ]
Biglarian, Akbar [1 ]
Bakhshi, Enayatollah [1 ]
Pourhoseingholi, Mohammad Amin [4 ]
机构
[1] Univ Social Welf & Rehabil Sci, Dept Biostat, Tehran, Iran
[2] Univ Tehran Med Sci, Dept Biostat, Tehran, Iran
[3] Univ Tehran Med Sci, Hosp Management Res Ctr, Tehran, Iran
[4] Shahid Beheshti Med Univ, Res Ctr Gastroenterol & Liver Dis, Tehran, Iran
关键词
colorectal cancer; prediction; survival analysis; Cox regression; artificial neural network; COLON-CANCER; SOCIOECONOMIC-STATUS; RISK; ALCOHOL; PREDICTION; SUBSITE; STAGE; IRAN; SURVIVAL; FEATURES;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background & Objectives: The aim of this study was to determine the prognostic factors of Iranian colorectal cancer (CRC) patients and their importance using an artificial neural network (ANN) model. Methods: This study was a historical cohort study and the data gathered from 1,219 registered CRC patients between January 2002 and October 2007 at the Research Center for Gastroenterology and Liver Disease of Shahid Beheshti University of Medical Sciences, Tehran, Iran. For determining the risk factors and survival prediction of patients, neural network (NN) and Cox regression models were used, utilizing R 2.12.0 software. Results: One, three and five-year estimated survival probability in colon patients were 0.92, 0.71, and 0.48 and for rectum patients were 0.86, 0.71, and 0.42, respectively. By the ANN model, pathologic distant metastasis, pathologic regional lymph nodes, tumor grade, high risk behavior, pathologic primary tumor, familial history and tumor size variables were determined as ordered important factors for colon cancer. Tumor grade, pathologic stage, age at diagnosis, tumor size, high risk behavior, pathologic distant metastasis and first treatment variables were ordered important factors for rectum cancer. The ANN model lead to more accurate predictions compared to the Cox model (true prediction of 89.0% vs. 78.6% for colon and 82.7% vs. 70.7% for rectum cancer patients). Conclusion: This study showed that ANN model is a more powerful tool in survival prediction and influential factors of the CRC patients compared to the Cox regression model. Therefore, this model is recommended for predicting and determining of risk factors of these patients.
引用
收藏
页码:1469 / 1472
页数:4
相关论文
共 50 条
[31]   Prognostic factors and survival of colorectal cancer in Kurdistan province, Iran A population-based study (2009-2014) [J].
Rasouli, Mohammad Aziz ;
Moradi, Ghobad ;
Roshani, Daem ;
Nikkhoo, Bahram ;
Ghaderi, Ebrahim ;
Ghaytasi, Bahman .
MEDICINE, 2017, 96 (06)
[32]   Specific metabolic biomarkers as risk and prognostic factors in colorectal cancer [J].
Muc-Wierzgon, Malgorzata ;
Nowakowska-Zajdel, Ewa ;
Dziegielewska-Gesiak, Sylwia ;
Kokot, Teresa ;
Klakla, Katarzyna ;
Fatyga, Edyta ;
Grochowska-Niedworok, Elzbieta ;
Waniczek, Dariusz ;
Wierzgon, Janusz .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (29) :9759-9774
[33]   Comparison of artificial neural network and logistic regression model for factors affecting birth weight [J].
Kirisci, Murat .
SN APPLIED SCIENCES, 2019, 1 (04)
[34]   Prognostic factors of colorectal cancer patients with brain metastases [J].
Roussille, Pauline ;
Auvray, Marie ;
Vansteene, Damien ;
Lecomte, Thierry ;
Rigault, Eugenie ;
Maillet, Marianne ;
Locher, Christophe ;
Dior, Marie ;
Hautefeuille, Vincent ;
Artru, Pascal ;
Mabro, May ;
Touchefeu, Yann ;
Marthey, Lysiane ;
Moulin, Valerie ;
Louafi, Samy ;
Lecaille, Cedric ;
Chautard, Romain ;
Lievre, Astrid ;
Zaanan, Aziz ;
Bennouna, Jaafar ;
Berger, Antoine ;
Emambux, Sheik ;
Randrian, Violaine ;
Tougeron, David .
RADIOTHERAPY AND ONCOLOGY, 2021, 158 :67-73
[35]   Diagnostic and prognostic factors in patients with prostate cancer: a systematic review [J].
Beyer, Katharina ;
Moris, Lisa ;
Lardas, Michael ;
Haire, Anna ;
Barletta, Francesco ;
Scuderi, Simone ;
Molnar, Megan ;
Herrera, Ronald ;
Rauf, Abdul ;
Campi, Riccardo ;
Greco, Isabella ;
Shiranov, Kirill ;
Dabestani, Saeed ;
van den Broeck, Thomas ;
Arun, Sujenthiran ;
Gacci, Mauro ;
Gandaglia, Giorgio ;
Omar, Muhammad Imran ;
MacLennan, Steven ;
Roobol, Monique J. ;
Farahmand, Bahman ;
Vradi, Eleni ;
Devecseri, Zsuzsanna ;
Asiimwe, Alex ;
Zong, Jihong ;
Maclennan, Sara J. ;
Collette, Laurence ;
NDow, James ;
Briganti, Alberto ;
Bjartell, Anders ;
Van Hemelrijck, Mieke .
BMJ OPEN, 2022, 12 (04)
[36]   Prognostic factors for ovarian metastases in colorectal cancer patients [J].
Chao Chen ;
Da Wang ;
Xiaoxu Ge ;
Jian Wang ;
Yuhuai Huang ;
Tianyi Ling ;
Tian Jin ;
Jinhua Yang ;
Fengping Wang ;
Weihong Wu ;
Lifeng Sun .
World Journal of Surgical Oncology, 19
[37]   TROY is a promising prognostic biomarker in patients with colorectal cancer [J].
Nishioka, Mitsuaki ;
Suehiro, Yutaka ;
Sakai, Kouhei ;
Matsumoto, Toshihiko ;
Okayama, Naoko ;
Mizuno, Hidekazu ;
Ueno, Koji ;
Suzuki, Nobuaki ;
Hashimoto, Shinichi ;
Takami, Taro ;
Hazama, Shoichi ;
Nagano, Hiroaki ;
Sakaida, Isao ;
Yamasaki, Takahiro .
ONCOLOGY LETTERS, 2018, 15 (04) :5989-5994
[38]   The prognostic value of KRAS mutations in patients with colorectal cancer [J].
Inoue, Yasuhiro ;
Saigusa, Susumu ;
Iwata, Takashi ;
Okugawa, Yoshinaga ;
Toiyama, Yuji ;
Tanaka, Koji ;
Uchida, Keiichi ;
Mohri, Yasuhiko ;
Kusunoki, Masato .
ONCOLOGY REPORTS, 2012, 28 (05) :1579-1584
[39]   Prognostic Nomogram for Colorectal Cancer Patients After Surgery [J].
Zhong, Pengqiang ;
Wu, Jiali ;
Yan, Xingxing ;
Liu, Yin ;
Wang, Ruizhi ;
Wang, Dong .
INDIAN JOURNAL OF SURGERY, 2023, 85 (05) :1184-1190
[40]   Prognostic value of a hypoxia-related microRNA signature in patients with colorectal cancer [J].
Yang, Yongmei ;
Qu, Ailin ;
Wu, Qi ;
Zhang, Xin ;
Wang, Lili ;
Li, Chen ;
Dong, Zhaogang ;
Du, Lutao ;
Wang, Chuanxin .
AGING-US, 2020, 12 (01) :35-52