Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems

被引:50
|
作者
Auscher, Pascal [2 ]
Axelsson, Andreas [1 ]
Hofmann, Steve [3 ]
机构
[1] Stockholm Univ, Inst Matemat, S-10691 Stockholm, Sweden
[2] Univ Paris 11, CNRS, UMR 8628, F-91405 Orsay, France
[3] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
Neumann problem; Dirichlet problem; elliptic equation; non-symmetric coefficients; Dirac operator; functional calculus; quadratic estimates; perturbation theory; Carleson measure;
D O I
10.1016/j.jfa.2008.02.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that Neumann, Dirichlet and regularity problems for divergence form elliptic equations in the half-space are well posed in L-2 for small complex Loo perturbations of a coefficient matrix which is either real symmetric, of block form or constant. All matrices are assumed to be independent of the transversal coordinate. We solve the Neumann, Dirichlet and regularity problems through a new boundary operator method which makes use of operators in the functional calculus of an underlaying first order Dirac type operator. We establish quadratic estimates for this Dirac operator, which implies that the associated Hardy projection operators are bounded and depend continuously on the coefficient matrix. We also prove that certain transmission problems for k-forms are well posed for small perturbations of block matrices. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:374 / 448
页数:75
相关论文
共 50 条
  • [31] On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution
    Turmetov, B. Kh
    Karachik, V. V.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2021, 31 (04): : 651 - 667
  • [32] Analytic functional calculus for two operators
    Kurbatov, V. G.
    Kurbatova, I. V.
    Oreshina, M. N.
    ADVANCES IN OPERATOR THEORY, 2021, 6 (04)
  • [33] A new functional calculus for noncommuting operators
    Colombo, Fabrizio
    Sabadini, Irene
    Struppa, Daniele C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (08) : 2255 - 2274
  • [34] Analytic functional calculus for two operators
    V. G. Kurbatov
    I. V. Kurbatova
    M. N. Oreshina
    Advances in Operator Theory, 2021, 6
  • [35] On functional calculus properties of Ritt operators
    Lancien, Florence
    Le Merdy, Christian
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (06) : 1239 - 1250
  • [36] Estimates for Dirichlet-to-Neumann Maps as Integro-differential Operators
    Guillen, Nestor
    Kitagawa, Jun
    Schwab, Russell W.
    POTENTIAL ANALYSIS, 2020, 53 (02) : 483 - 521
  • [37] Estimates for Dirichlet-to-Neumann Maps as Integro-differential Operators
    Nestor Guillen
    Jun Kitagawa
    Russell W. Schwab
    Potential Analysis, 2020, 53 : 483 - 521
  • [38] On the spectrum of magnetic Dirac operators with Coulomb-type perturbations
    Richard, Serge
    de Aldecoa, Rafael Tiedra
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (02) : 625 - 641
  • [39] Dirichlet and Neumann Problems for String Equation, Poncelet Problem and Pell-Abel Equation
    Burskii, Vladimir P.
    Zhedanov, Alexei S.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
  • [40] Phillips symmetric operators and functional calculus of maximal symmetric operators
    Kuzel, Sergiusz
    Rozanska, Anna
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (02)