Tin Intercalated Ultrathin MoO3 Nanoribbons for Advanced Lithium-Sulfur Batteries

被引:135
作者
Yang, Weiwei [1 ]
Xiao, Jiewen [1 ]
Ma, Yang [1 ]
Cui, Shiqiang [1 ]
Zhang, Peng [1 ]
Zhai, Pengbo [1 ]
Meng, Lingjia [2 ]
Wang, Xingguo [1 ]
Wei, Yi [1 ]
Du, Zhiguo [1 ]
Li, Bixuan [1 ]
Sun, Zhibo [1 ]
Yang, Shubin [1 ]
Zhang, Qianfan [1 ]
Gong, Yongji [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
2D materials; intercalation; Li-S batteries; MoO3; nanoribbons; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; RATIONAL DESIGN; GRAPHENE; TRANSITION; CATHODE; METALS;
D O I
10.1002/aenm.201803137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heteroatom doping strategies have been widely developed to engineer the conductivity and polarity of 2D materials to improve their performance as the host for sulfur cathode in lithium-sulfur batteries. However, further improvement is limited by the inhomogeneity and the small amount of the doping atoms. An intercalation method to improve the conductivity and polarity of 2D-layered alpha-MoO3 nanoribbons is developed here, thus, resulting in much improved electrochemical performance as sulfur host with better rate and cycle performance. The first principle calculations show that the binding energy of MoO3 and lithium polysulfides, lithium sulfide and sulfur is significantly improved after Sn intercalation. The Sn0.063MoO3-S cathode delivers an initial specific capacity of 1390.3 mAh g(-1) at 0.1 C with the Coulombic efficiency up to 99.7% and shows 79.6% retention of the initial capacity over 500 cycles at 1 C rate with a capacity decay of 0.04% per cycle. This intercalation method provides a new strategy to engineer the electrochemical properties of 2D materials.
引用
收藏
页数:8
相关论文
共 45 条
[11]   Impact of lattice distortion and electron doping on α-MoO3 electronic structure [J].
Huang, Peng-Ru ;
He, Yao ;
Cao, Chao ;
Lu, Zheng-Hong .
SCIENTIFIC REPORTS, 2014, 4
[12]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[13]  
Ji XL, 2009, NAT MATER, V8, P500, DOI [10.1038/NMAT2460, 10.1038/nmat2460]
[14]   Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets [J].
Jin, Zhong ;
Yao, Jun ;
Kittrell, Carter ;
Tour, James M. .
ACS NANO, 2011, 5 (05) :4112-4117
[15]   Chemical Intercalation of Zerovalent Metals into 2D Layered Bi2Se3 Nanoribbons [J].
Koski, Kristie J. ;
Wessells, Colin D. ;
Reed, Bryan W. ;
Cha, Judy J. ;
Kong, Desheng ;
Cui, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (33) :13773-13779
[16]   Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition [J].
Kozen, Alexander C. ;
Lin, Chuan-Fu ;
Pearse, Alexander J. ;
Schroeder, Marshall A. ;
Han, Xiaogang ;
Hu, Liangbing ;
Lee, Sang-Bok ;
Rubloff, Gary W. ;
Noked, Malachi .
ACS NANO, 2015, 9 (06) :5884-5892
[17]   AB-INITIO MOLECULAR-DYNAMICS SIMULATION OF THE LIQUID-METAL AMORPHOUS-SEMICONDUCTOR TRANSITION IN GERMANIUM [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1994, 49 (20) :14251-14269
[18]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[19]   ABINITIO MOLECULAR-DYNAMICS FOR LIQUID-METALS [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1993, 47 (01) :558-561
[20]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775